Name: _____ Quadratics Unit 1 Notes

8.1 – Add and Subtract Polynomials

<u>Warning</u>: How is $x^3 + x^3$ and $x^3 \cdot x^3$ different?

Example: Add up the following numbers:	Example: Add up all the following pieces
Example : Add up the following numbers:	Example: Add up all the following pieces.
1304.25 + 821.391	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Example: Use the vertical align technique to add or subtract the following polynomials.

$(-3x^2 - 8x + 5) + (x^2 - 6x + 2)$	$(q^3 - 7q^2 - 3q) - (q^3 + 10q^2 - 4)$

<u>Vocabulary</u>

Polynomial: the addition or subtraction of variable terms with _______ integer exponents Binomial/Trinomial: _____ (binomial) or three (trinomial) term polynomials Degree of a Polynomial: greatest ______ of any term in the polynomial Leading Coefficient: coefficient of the ______ term when written in standard form (highest power to lowest) Example: Write $3x^3 - 4x^4 + x^2$ in standard form. Identify the degree, leading coefficient of the polynomial, and state whether it is a monomial, binomial or trinomial.

Tell whether the expression is a polynomial. If it is a polynomial find its degree and leading coefficient. Otherwise, tell why it is not a polynomial.

5x + 4	$\frac{9}{m}$
$x^4 + 3x^3 - x$	$3 \cdot \left(\frac{1}{2}\right)^x$

8.3 – Multiply Polynomials

Tools to Multiply: To multiply polynomials there are two techniques: 1) area model and 2) distribution.

Example: Find the product of (x + 3)(2x + 1) using the tile model

Table Method	Distribution Method	

Example: Find the product of (x + 1)(2x + 2)

Table Method	Distribution Method	

Example: A contractor is building a deck around a pool (see image). He doesn't know what the deck's size will be yet, so he calls it *x*. Write an expression for the area of the deck. Then, he could use this expression to substitute different deck sizes in and find the total area required for the project.

Example: Find the product of $(a^2 + 3a - 4)(2a + 3)$

8.4/8.5 – Find Special Products of Polynomials and Factoring out Greatest Common Factor

Examples

Find the product of $(x + 2)^2$	Find the product of $(2x - 3)^2$	2
KEY CONCEPT	For Your Notebook	
Square of a Binomial	Square of a Binomial Pattern	
Algebra	Example	
$(a+b)^2 = a^2 + 2ab + b^2$	$^{2} \qquad (x+5)^{2} = x^{2} + 10x + 25$	

Examples

Find the product of (r	(r+3)(r-3)	Find the product of $(x + 10)(x - 10)$
	-	
	KEY CONCEPT	For Your Notebook
	Sum and Difference Pattern	
	Algebra	Example

Introduction to the Next Section: Factoring out the Great Common Factor

Example: What is the greatest common factor of the following pairs?

1. 12 and 18	2. x^2y and xy	3. $12x^2y$ and $18xy$

Factoring Out: To factor out means _____

Example: Factor out the greatest common factor from the following polynomials.

$4x^4 + 24x^3$	$9x^7 - 6x^5$	$-12xy^2 + 6x^2y + 2x^2y^2$

<u>8.6 – Factor x² + bx + c</u>

Review Example - Why do we get the final answer we do? How does it connect to the original statement?

 $(x+3)(x+5) = ___=$

 $(x + 1)(x - 5) = ___=$

Instead of me giving you the dimensions of the rectangle, if I gave you the pieces could you work backwards to get the dimensions? This is called factoring the polynomial.

()() = _____ = $x^2 + 5x + 6$

Factored Form:

Standard Form:

Steps to factoring $x^2 + bx + c$

1. GCF factoring (distributive property backwards), factor out any common factors

2. If in standard form find two factors of c that add up to b.

3. Check!!!

Examples: Factor the following polynomials to put them into factored form.

1. $x^2 + 6x + 5$	Check:	
2. $2x^2 + 6x - 20$	Check:	
3. $-x^2 + 3x + 28$	Check:	

Critical Thinking Example

Based on the following information, what are the possible values of b in the quadratic function

 $x^2 - bx + 12$

8.6 Day 2 – Solve Polynomial Equations in Factored Form

Lead-In Ideas

- 1. If $x \cdot y \cdot z = 0$ and x = 2 and y = 3, what is the value of z? How do you know?
- 2. Solve for x if $(x + 2) \cdot y = 0$ and y = 3.
- 3. Solve for x if (x + 5)(x 3) = 0.

CONCEPT

Zero-Product Property

Let *a* and *b* be real numbers. If ab = 0, then a = 0 or b = 0.

Examples: Solve the following factored quadratic equations by using the zero product property.

(x+3)(x-5) = 0	(x+14)(x-3) = 0	(2x - 1)(3x + 1) = 0

Examples: By guessing and checking, find values of x that make the left side also equal 0.

 $x^2 - 15x + 54 = 0$

Is it difficult? Can you think of a better strategy?

Examples: Solve the following quadratic equations by factoring first.

$x^2 - x - 42 = 0$	$x^2 - 10x = 24$

Applied Example: Path of Projectile Motion

Vertical motion can be modeled by a quadratic equation of the form stated below. Use this to determine how long Clyde Drexler, former NBA player, stayed in the air if he took off with a velocity upwards of 16 ft/sec.

Vertical Motion Model

The height h (in feet) of a projectile can be modeled by

$$h = -16t^2 + vt + s$$

where *t* is the time (in seconds) the object has been in the air, *v* is the initial vertical velocity (in feet per second), and *s* is the initial height (in feet).

For Your Notebook

<u>9.3a – Graph Quadratic Equations of the Form $y = ax^2$ and $y = ax^2 + c$ </u>

Quadratic Equation/Function:

Х	У
-3	
-2	
-1	
0	
1	
2	
3	

Parabola:	
Vertex:	Axis of Symmetry:

Example: Make a table to sketch a graph of each and compare it to the parent function: $y = x^2$

y = 0.5x	2	
х	у	
-3		
-2		
-1		
0		
1		
2		
3		

For a quadratic function, $y = ax^2$, *a* makes the graph:

Example: Make a table to sketch a graph of each and compare it to the parent function: $y = x^2$

For a quadratic function, $y = x^2 + c$, c makes the graph:

<u>9.2 Day 1 – Graph Quadratic Equations of the Form $y = x^2 + bx + c$ by Factoring to Find Zeros</u>

1) What is true about the y-coordinates of the x-intercepts?

2) Where is the vertex located in relation to the x-intercepts?

<u>Goal</u>: In order to graph a quadratic equation, we must first find the x-intercepts.

X-intercepts, zeros, or roots of a function: all mean the same thing, which is: _____

(3,0)

Example: Graph $y = x^2 - 2x - 8$

Step 1: Factor the equation	Step 2: Find the zeros
Step 3: Find the vertex	Step 4: Find the y-int and its reflection

_		_	_	_		_	_	_	10	8	_	_	_	_	_	_	_	_	_
		_							9										
							1		8						2				1
			2				2		7		3				3	2			4
									6										
									5						5. I				
							1		4		1				2				1
			3				8		3		2	2.1			8	2			2
									2										
			1				s		1		1				9.				
							1.												1
-9	æ	-	-6	-5	Å	Ś	.4		1	1	2	3	4	5	b	1	8	a	Ч
									2										
							1		3						9				
									4						2				1
			-	1			1		5		5	1	1		1	1			1
									6										
			1				-		7		- 1				1				
			1				1		8		1				2				1
			3	6.5			3		9		3	2			1				2
									10										

Example: Graph $y = x^2 - x - 6$

Step 1: Factor the equation	Step 2: Find the zeros
Step 3: Find the vertex	Step 4: Find the y-int and its reflection

_										10										
L			_							9	1									
L				1				1		8		1				2				5.
		_	_	8				5		7		3				8				8
L										6										
			_						_	5										
				1				1		4		1								1
	_		-	3	6.3			3	6.0	3	-	3				8	4.5			8
										2										
			_						_	1						-	_			
	-9	-8	-1	-0	2	4	-3	-2	-	-1	1	z	з	4	5	6	7	8	9	1
										-2										
4								4		3						ан -				- 1
				1				1		4										
100			-	3				3	1. 1	5		3				3	1.			× .
										-6										
1								1		7		1				9				1
								1		8		1				2				1.
				3				1	2.2	9		2				1				2
ľ	T								-	-10										

Example: Graph $y = -2x^2 + 4x$

Step 1: Factor the equation	Step 2: Find the zeros
Step 3: Find the vertex	<u>Step 4</u> : Find the y-int and its reflection

<u>9.2 Day 2 – Graph Quadratic Equations of the Form $y = x^2 + bx + c$ by Factoring to Find Zeros</u>

Example: I have already factored the following quadratic function. Use it to pick out the key pieces of information.

$$f(x) = x^2 - 4x - 12 = (x - 6)(x + 2)$$

Zeros:

Vertex:

<u>Y-int:</u>

Example: Graph $y = x^2 + 8x + 12$

<u>Step 1</u> : Factor the equation	Step 2: Find the zeros
Step 3: Find the vertex	<u>Step 4</u> : Find the y-int and its reflection

Example: Graph $y = -x^2 - 3x$

<u>Step 1</u> : Factor the equation	<u>Step 2:</u> Find the zeros
<u>Step 3:</u> Find the vertex	<u>Step 4</u> : Find the y-int and its reflection

	100			Т	1		1 m 1 m	<u>10</u>			1			4	1		201
-	-	-	+	-	-	1			-	-		_	-	-		_	-
\vdash	-	-	+	-	-		1	8		-		_					2
2	-	- 3	-	-	-	3 1		4	3-1	-	-	_	3-1	2.1		_	3
	2		+			1.1		6			2	_					a
_	_	-	-	-	_	-		5		_		_			_		
-		-						1	20-1			_					
	-	- 3	1	-	_	300		3	3-1	2. 2		_	5-1	2 3		_	3
Ц							8	2									
		1	-	-				4				_					
9-9	-8	-	-	-5	4 -	3 -2	- ⁻ -1	t	z	3	4	5	6	1	8	Э	T
							-2										
		_											Sec. 1			- I	÷
		Ĵ		1			-3	<u> </u>									
		8 19 4	-			0	-3										-
		10 - 10 - 10				1	100						3				1
		82 - 50 - 6				10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	4										10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
		1 10 10 10 10 10 10 10 10 10 10 10 10 10		-		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-4 -5										
		6 20 5 5 5 5 5 5					4 -5 -6										
							4 5 6 7										

