\qquad

8.1 - Add and Subtract Polynomials

Warning: How is $x^{3}+x^{3}$ and $x^{3} \cdot x^{3}$ different?

Example: Add up the following numbers:
1304.25 + 821.391

Example: Add up all the following pieces.

| $-2 x$ | | $-3 x^{3}$ | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | $-3 x^{2}$ | | $4 x^{2}$ | 100 |
| 77 | | $5 x$ | | |
| $-2 x^{3}$ | 16 | | x^{2} | 99 |
| 5 | | $8 x^{3}$ | $-10 x$ | |

Example: Use the vertical align technique to add or subtract the following polynomials.

$\left(-3 x^{2}-8 x+5\right)+\left(x^{2}-6 x+2\right)$	$\left(q^{3}-7 q^{2}-3 q\right)-\left(q^{3}+10 q^{2}-4\right)$

Vocabulary

Polynomial: the addition or subtraction of variable terms with \qquad integer exponents

Binomial/Trinomial: \qquad (binomial) or three (trinomial) term polynomials

Degree of a Polynomial: greatest \qquad of any term in the polynomial

Leading Coefficient: coefficient of the \qquad term when written in standard form (highest power to lowest)

Example: Write $3 x^{3}-4 x^{4}+x^{2}$ in standard form. Identify the degree, leading coefficient of the polynomial, and state whether it is a monomial, binomial or trinomial.

Tell whether the expression is a polynomial. If it is a polynomial find its degree and leading coefficient. Otherwise, tell why it is not a polynomial.

$5 x+4$	$\frac{9}{m}$
$x^{4}+3 x^{3}-x$	$3 \cdot\left(\frac{1}{2}\right)^{x}$

8.3 - Multiply Polynomials

Tools to Multiply: To multiply polynomials there are two techniques: 1) area model and 2) distribution.
Example: Find the product of $(x+3)(2 x+1)$ using the tile model

Table Method	Distribution Method

Example: Find the product of $(x+1)(2 x+2)$

Table Method	Distribution Method

Example: A contractor is building a deck around a pool (see image). He doesn't know what the deck's size will be yet, so he calls it x. Write an expression for the area of the deck. Then, he could use this expression to substitute different deck sizes in and find the total area required for the project.

Example: Find the product of $\left(a^{2}+3 a-4\right)(2 a+3)$

8.4/8.5 - Find Special Products of Polynomials and Factoring out Greatest Common Factor

Examples

Examples

Find the product of $(r+3)(r-3)$	Find the product of $(x+10)(x-10)$

KEY CONCEPT

Sum and Difference Pattern

Algebra
$(a+b)(a-b)=a^{2}-b^{2}$

Example
$(x+3)(x-3)=x^{2}-9$

Introduction to the Next Section: Factoring out the Great Common Factor
Example: What is the greatest common factor of the following pairs?

1. 12 and 18	2. $x^{2} y$ and $x y$	$3.12 x^{2} y$ and $18 x y$

Factoring Out: To factor out means

\qquad
Example: Factor out the greatest common factor from the following polynomials.

$4 x^{4}+24 x^{3}$	$9 x^{7}-6 x^{5}$	$-12 x y^{2}+6 x^{2} y+2 x^{2} y^{2}$

$8.6-$ Factor $\mathrm{x}^{2}+\mathrm{bx}+\mathrm{c}$

Review Example -Why do we get the final answer we do? How does it connect to the original statement?
$(x+3)(x+5)=$ \qquad $=$ \qquad
$(x+1)(x-5)=$ \qquad $=$ \qquad
Instead of me giving you the dimensions of the rectangle, if I gave you the pieces could you work backwards to get the dimensions? This is called factoring the polynomial.
$(\quad)(\quad)=$ \qquad $=x^{2}+5 x+6$

Factored Form:

Standard Form:

Steps to factoring $x^{2}+b x+c$

1. GCF factoring (distributive property backwards), factor out any common factors
2. If in standard form find two factors of c that add up to b.
3. Check!!!

Examples: Factor the following polynomials to put them into factored form.

Critical Thinking Example

Based on the following information, what are the possible values of b in the quadratic function

$$
x^{2}-b x+12
$$

1. If $x \cdot y \cdot z=0$ and $x=2$ and $y=3$, what is the value of z ? How do you know?
2. Solve for x if $(x+2) \cdot y=0$ and $\mathrm{y}=3$.

Zero-Product Property

Let a and b be real numbers. If $a b=0$, then $a=0$ or $b=0$.
3. Solve for x if $(x+5)(x-3)=0$.

Examples: Solve the following factored quadratic equations by using the zero product property.

$(x+3)(x-5)=0$	$(x+14)(x-3)=0$	$(2 x-1)(3 x+1)=0$

Examples: By guessing and checking, find values of x that make the left side also equal 0 .

$$
x^{2}-15 x+54=0
$$

Is it difficult? Can you think of a better strategy?

Examples: Solve the following quadratic equations by factoring first.

$x^{2}-x-42=0$	$x^{2}-10 x=24$

Applied Example: Path of Projectile Motion

Vertical motion can be modeled by a quadratic equation of the form stated below. Use this to determine how long Clyde Drexler, former NBA player, stayed in the air if he took off with a velocity upwards of $16 \mathrm{ft} / \mathrm{sec}$.

Vertical Motion Model

The height h (in feet) of a projectile can be modeled by

$$
h=-16 t^{2}+v t+s
$$

where t is the time (in seconds) the object has been in the air, v is the initial vertical velocity (in feet per second), and s is the initial height (in feet).
9.3a - Graph Quadratic Equations of the Form $y=a x^{2}$ and $y=a x^{2}+c$

Quadratic Equation/Function:

Example: Make a table to sketch a graph of the parent function $y=x^{2}$

x	y
-3	
-2	
-1	
0	
1	
2	
3	

Parabola:

Vertex:

Axis of Symmetry:

Example: Make a table to sketch a graph of each and compare it to the parent function: $y=x^{2}$

$y=2 x^{2}$	
x	y
-3	
-2	
-1	
0	
1	
2	
3	

$y=0.5 x^{2}$
x
:---:
-3
-2
-1
0
1
2
3

For a quadratic function, $y=a x^{2}, a$ makes the graph:

Example: Make a table to sketch a graph of each and compare it to the parent function: $y=x^{2}$

$y=x^{2}+3$	
x	y
-3	
-2	
-1	
0	
1	
2	
3	

$y=x^{2}-4$	
x	y
-3	
-2	
-1	
0	
1	
2	
3	

For a quadratic function, $y=x^{2}+c, c$ makes the graph:

1) What is true about the y-coordinates of the x-intercepts?
2) Where is the vertex located in relation to the x-intercepts?

Goal: In order to graph a quadratic equation, we must first find the x intercepts.

X-intercepts, $\underline{\text { zeros, }}$ or roots of a function: all mean the same thing, which is: \qquad
\qquad

Example: Graph $y=x^{2}-2 x-8$

Step 1: Factor the equation	Step 2: Find the zeros
Step 3: Find the vertex	Step 4: Find the y-int and its reflection

Example: Graph $y=x^{2}-x-6$

Step 1: Factor the equation	Step 2: Find the zeros
Step 3: Find the vertex	Step 4: Find the y-int and its reflection

Example: Graph $y=-2 x^{2}+4 x$

Step 1: Factor the equation	Step 2: Find the zeros
Step 3: Find the vertex	Step 4: Find the y-int and its reflection

Example: I have already factored the following quadratic function. Use it to pick out the key pieces of information.

$$
f(x)=x^{2}-4 x-12=(x-6)(x+2)
$$

Zeros:
Vertex:

Y-int:
Example: Graph $y=x^{2}+8 x+12$

Step 1: Factor the equation	Step 2: Find the zeros
Step 3: Find the vertex	Step 4: Find the y-int and its reflection

Example: Graph $y=-x^{2}-3 x$

Step 1: Factor the equation	Step 2: Find the zeros
Step 3: Find the vertex	Step 4: Find the y-int and its reflection

