\qquad Per: \qquad
Honors 1

Quadratics Unit 2 Practice Test and Chapter 9

Factor each trinomial.

$1.3 x^{2}-11 x-20$	2. $4 x^{2}-13 x+10$	3. $2 x^{2}+22 x+56$

Solve the equation by factoring.
4. $3 x^{2}+17 x+20=0$
5. $-3 x^{2}-16=-26 x$

Graph the equation. (Note: \#7 is NOT factorable, so you have to use a different technique)

a. Zeros: \qquad
\qquad
b. Vertex = ,)
c. y - intercept $=$ \qquad
7. $y=x^{2}+2 x+3$

a. $\operatorname{Vertex}=(\quad, \quad)$
b. $\quad \mathrm{Y}$-intercept $=$ \qquad

Solve.

| $8.8 x^{2}-50=0$ | $9 .(x+5)^{2}+8=44$ | $10 . \quad 2(x-2)^{2}-7=91$ |
| :--- | :--- | :--- | :--- |

11. Find the value of c that makes each trinomial a perfect square.
$x^{2}+26 x+$ \qquad $=$
$x^{2}-4 x+\ldots=$
$x^{2}+5 x+$ \qquad $=$
12. Convert from standard form to vertex form. State where the vertex is located.

$$
y=x^{2}+12 x+32
$$

15. Solve by any method of your choice.

$$
\frac{1}{2}(x+4)^{2}+10=42
$$

17. Find the value of A in the function so that the function $f(x)$ has an x -intercept at $x=4$ and a vertex at $(1,-9)$: $f(x)=x^{2}-2 x+A$
18. Solve the equation by completing the square.

$$
x^{2}+3 x+21=22
$$

14. Solve by the quadratic forumula and show your steps.

$$
4 x^{2}+5 x=6
$$

16. Solve by any method of your choice.

$$
\frac{(x+3)^{2}}{x}=\frac{-7}{5}
$$

18. State whether each situation has a positive, negative or zero discriminant.

| $y=3 x^{2}-4 x+7$ | Two x-intercepts |
| :--- | :--- | :--- |

