\qquad Per: \qquad

Proving the Cosine Sum Formula and Half-Angle Formulas

In the lesson, we used the figure below to prove the sine sum formula. You are going to now prove the cosine sum formula in a similar fashion.

Goal: Prove $\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$
Consider the figure we used for the sine sum formula.

Use the sine sum formula we did in class as a guide to prove the cosine sum formula.
I have done the left-hand side for you. Your job is to show it equals the right-hand side.

$$
\begin{gathered}
\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y) \\
\overline{A F}=\cos (x) \cos (y)-\sin (x) \sin (y) \\
\overline{A B}-\overline{F B}=\cos (x) \cos (y)-\sin (x) \sin (y)
\end{gathered}
$$

Goal: Prove the Half-Angle Formulas

In the lesson we proved the power-reducing formulas shown below.
$\sin ^{2} u=\frac{1-\cos 2 u}{2} \quad \cos ^{2} u=\frac{1+\cos 2 u}{2} \quad \tan ^{2} u=\frac{1-\cos 2 u}{1+\cos 2 u}$

1) Show how you can transform the power-reducing formulas to obtain what are known as the half-angle formulas shown below.

$$
\sin \frac{v}{2}= \pm \sqrt{\frac{1-\cos v}{2}} \quad \cos \frac{v}{2}= \pm \sqrt{\frac{1+\cos v}{2}}
$$

2) Complete the steps below to transform the power reducing formula for tangent into a half-angle formula for tangent.

$$
\begin{gathered}
\tan \frac{v}{2}=\frac{\sin \frac{v}{2}}{\cos \frac{v}{2}} \\
\tan \frac{v}{2}=\frac{\sqrt{\frac{1-\cos v}{2}}}{\sqrt{\frac{1+\cos v}{2}}} \\
\tan \frac{v}{2}=\sqrt{\frac{1-\cos v}{1+\cos v}} \\
\tan \frac{v}{2}=\sqrt{\frac{(1-\cos v)(1-\cos v)}{(1+\cos v)(1-\cos v)}} \\
\tan \frac{v}{2}=\sqrt{\frac{\tan \frac{v}{2}}{}=\sqrt{\frac{\tan \frac{v}{2}}{}}=\frac{1-\cos v}{\sin v}}
\end{gathered}
$$

