\qquad
\qquad

Perform the indicated operation:

1. $\left[\begin{array}{cc}1 & 3 \\ -2 & 5 \\ 2 & 4\end{array}\right]+\left[\begin{array}{cc}4 & 9 \\ 7 & 1 \\ -2 & 6\end{array}\right]$
2. $\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]-\left[\begin{array}{cc}-5 & 2 \\ 7 & 1\end{array}\right]$
3. $2\left(\left[\begin{array}{ccc}3 & 2 & 5 \\ -1 & 6 & -2\end{array}\right]+\left[\begin{array}{ccc}1 & 3 & -4 \\ 6 & 4 & 2\end{array}\right]\right)$
4. $-3\left[\begin{array}{cc}1 & 4 \\ -2 & 6\end{array}\right]-\left(\left[\begin{array}{ll}0 & 3 \\ 2 & 6\end{array}\right]+\left[\begin{array}{cc}-3 & 2 \\ 5 & -1\end{array}\right]\right)$

State the order of each matrix and determine whether the product $A B$ is defined. If it is, state the order of $A B$:
5. $A=\left[\begin{array}{cc}1 & -2 \\ 3 & 4 \\ 4 & 1\end{array}\right], B=\left[\begin{array}{lll}4 & 9 & -3\end{array}\right]$
6. $A=\left[\begin{array}{ccc}1 & 4 & -2 \\ 3 & -1 & 0\end{array}\right], B=\left[\begin{array}{ccc}3 & 1 & -2 \\ 5 & 2 & 4 \\ -3 & -6 & 7\end{array}\right]$

Find the product:
7. $\left[\begin{array}{cc}1 & -2 \\ 6 & 4\end{array}\right]\left[\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right]$
8. $\left[\begin{array}{ccc}2 & 0 & 1 \\ -3 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]\left[\begin{array}{ccc}-2 & -1 & 2 \\ 1 & 0 & 3 \\ 0 & -4 & 1\end{array}\right]$
9. $\left[\begin{array}{cc}-1 & 3 \\ 2 & 2\end{array}\right]\left[\begin{array}{ccc}1 & 3 & 4 \\ -2 & 0 & 5\end{array}\right]$

Simplify the expression:
10. $\left[\begin{array}{cc}\frac{1}{2} & -1 \\ -\frac{3}{4} & \frac{3}{2}\end{array}\right]\left[\begin{array}{cc}-3 & -5 \\ 4 & 2\end{array}\right]$
11. $\left[\begin{array}{ccc}2 & -4 & 0 \\ 0 & 3 & 6 \\ -1 & 5 & 1\end{array}\right]\left(\left[\begin{array}{cc}1 & 2 \\ -3 & 0 \\ 5 & 1\end{array}\right]+\left[\begin{array}{cc}3 & -1 \\ 0 & 2 \\ 4 & 5\end{array}\right]\right)$

Solve the system using Gaussian elimination, with back substitution (by hand)
12. $\left\{\begin{array}{l}3 x-2 y=8 \\ 4 x-3 y=10\end{array}\right.$
13. $\left\{\begin{array}{c}3 x+y-2 z=1 \\ x-2 y+z=12 \\ x+4 y+0 z=-18\end{array}\right.$
\qquad
\qquad
Solve the system using matrices and RREF in the calculator
14. $\left\{\begin{array}{c}5 x-2 y=-9 \\ -7 x+3 y=14\end{array}\right.$
15. $\left\{\begin{aligned} x-y+z & =-2 \\ 2 x+0 y+3 z & =4 \\ 3 y-z & =7\end{aligned}\right.$
16. $\left\{\begin{array}{c}x+y-2 z=-9 \\ 2 x+y+z=0 \\ -x-2 y+6 z=21\end{array}\right.$

The Broadwater Health Club offers three membership plans. With Plan A, you can use all club facilities: the pools, the fitness center, and the Adventure Zone. With Plan B, you can use the pools and the fitness center. With Plan C, you can only use the Adventure Zone. The matrices below show the annual cost for a Single and Family membership for the years 2017-2019:

2017
$\left.\begin{array}{l}\text { Single } \\ \text { Plan A A } \\ \text { Plan B } \mathrm{B} \\ \text { Plan C }\end{array} \begin{array}{ll}336 & 624 \\ 228 & 528 \\ 216 & 384\end{array}\right]$

2018

$\left.\begin{array}{l}\text { Single } \\ \text { Family } \\ \text { Plan A } \\ \text { Plan B } \\ \text { Blan C }\end{array} \begin{array}{ll}384 & 720 \\ 312 & 576 \\ 240 & 432\end{array}\right]$

2019
Single Family
Plan A
Plan B C
Plan $\left[\begin{array}{ll}420 & 792 \\ 360 & 672 \\ 288 & 528\end{array}\right]$
17. You purchased a Single Plan A in 2017, a Family Plan B in 2018, and a Family Plan A in 2019. How much did you spend on your membership over the three years?
18. You purchased a Family Plan C in 2017 and upgraded to the next highest plan each year. How much did you spend for your membership over the next three years?
19. The crosstown musical was performed on three different evenings. The attendance for each evening is shown in the table at the right. Adult tickets sold for $\$ 4.50$, and student tickets sold for $\$ 3.50$. Set up matrices and use matrix multiplication to determine how much money was taken in each night.

	Adults	Students
Opening night	210	150
Second night	200	225
Final night	255	240

