\qquad
Semester 2 PRACTICE TEST Use an extra sheet to show work if you run out of room, or the blank last back page.

1. Identify the amplitude and period of each.
$2 \cos (4 x)$
Amplitude: $|2|=2$

Period: $\frac{2 \pi}{b}=\frac{2 \pi}{4}=\frac{\pi}{2}$

$\cos (x)$
3.

Identify the information for

$$
f(x)=3 \cos \left(\frac{1}{4}\left(x-\frac{\pi}{2}\right)\right)+5
$$

Horizontal shift: Right $\frac{\pi}{2}$
Period:

$$
\frac{2 \pi}{6}=\frac{2 \pi}{1 / 4}=8 \pi
$$

Amplitude: $|3|=3$
Vertical shift: Up 5
$-1.5 \sin (x / 4)$
Amplitude: $|-1.5|=1.5$
Period: $\frac{2 \pi}{1 / 4}=8 \pi$

2. Sketch the graph for each from Problem 2.
$2 \cos (4 x)$

$-1.5 \sin \left(\frac{x}{4}\right)$

4. Use the parent table for $\sin x$ to fill in the table for $f(x)=0.5 \sin (2 x+\pi)+1$
Identify the information for
$f(x)=0.5 \sin (2 x+\pi)+1$
$f(x)=0.5 \sin (2(x+\pi / 2))+1$
Horizontal shift:Left $\pi / 2$
Period:

$$
\frac{2 \pi}{b}=\frac{2 \pi}{2}=\pi
$$

Amplitude: $|0.5|=0 . \overline{5}$ Vertical shift: $U_{p} 1$
5. Use the fact that $f(x)=\cot x=\frac{\cos x}{\sin x}$ to explain why the graph has a vertical asymptotes at $x=0$ and a zero at $x=\frac{\pi}{2}$.
$\cot (x)=\frac{\cos x}{\sin x}$
There is
a V.A.@ $X=0$
because that is where
$\sin (x)=0$, so that is
where we would be
dividing by 0 .

7. Find the height of the lamppost to the nearest tenth of a foot.

$$
\tan (30)=\frac{h}{18}
$$

$$
h=18 \cdot \tan (30)
$$

8. Use the fact that $\cos x=-1 / 2$ and $\tan x<0$ to get the other 5 trig values.

$$
\begin{array}{lll}
\sin (x)=\frac{\sqrt{3}}{2} & \cos (x)=-\frac{1}{2} & \tan (x)=\frac{\sqrt{3}}{-1}=-\sqrt{3} \\
\csc (x)=\frac{2}{\sqrt{3}} \text { or } \frac{2 \sqrt{3}}{3} \sec (x)=-2 & \cot (x)=-\frac{1}{\sqrt{3}} \text { or }-\frac{\sqrt{3}}{3}
\end{array}
$$

18. Find the measure of angle X.

$$
\begin{aligned}
& \cos x=\frac{y^{2}+z^{2}-x^{2}}{2 y z} \\
& \cos x=\frac{6^{2}+9^{2}-8^{2}}{2(6)(9)} \\
& \cos x=\frac{53}{108} \\
& \cos ^{-1}\left(\frac{53}{108}\right)=x
\end{aligned}
$$

$$
x=60.6^{\circ}
$$

20. Sketch in vector $\boldsymbol{v}=-2 \boldsymbol{i}-5 \boldsymbol{j}$ and then find the magnitude and direction of $\boldsymbol{v} . \quad \overrightarrow{\mathrm{V}}=\langle-2,-5\rangle$

$$
\begin{array}{r}
\|\vec{v}\|=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{(-2)^{2}+(-5)^{2}}=\sqrt{29} \\
\|v\|=\sqrt{29} \approx 5.39
\end{array}
$$

$$
\tan ^{-1}\left(\frac{-5}{-2}\right)=68.2^{\circ}
$$

$$
\theta=180^{\circ}+68.2^{\circ}=248.2^{\circ}
$$

22. Graph the equation $(x-4)^{2}+(y+3)^{2}=25$.

Circle:

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

center: (h, k)
radius $=r$
Center: $(4,-3)$

$$
\text { radius }=\sqrt{25}=5
$$

19. Given $\vec{u}=\langle 4,-5>$ and $\vec{v}=<16,-6>$
b) find $\vec{u}-\frac{1}{2} \vec{v}$ algebraically.

$$
\vec{u}-\frac{1}{2} \vec{v}
$$

$$
\langle 4,5\rangle-\frac{1}{2}\langle 6,-6\rangle
$$

$$
\begin{aligned}
& \left.\quad-\frac{1}{\left.-\frac{1}{2} \right\rvert\,} \right\rvert\, \\
& =[|-4,-2\rangle
\end{aligned}
$$

$$
\langle 4,-5\rangle-\langle 8,-3\rangle=\langle-4,-2\rangle
$$

\sim^{21}. A plane with an airspeed of 350 mph at a bearing of $\mathrm{E} 80^{\circ} \mathrm{N}$国

$$
\begin{aligned}
& P_{x}=350 \cos 80=60.8 \\
& P_{y}=350 \sin 80=344.7 \\
& W_{x}=60 \cos 30=52 \\
& W_{y}=60 \sin 30=30 \\
& \vec{p}=\langle 60.8,344.7\rangle \\
& +\vec{w}=\langle 52,30\rangle \\
& \vec{p}+\vec{W}=\langle 112.8,374.7\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \|\vec{p}+\vec{w}\|=\sqrt{(112.8)^{2}+(374.7)^{2}}=391.3 \mathrm{mph} \\
& \theta=\tan ^{-1}\left(\frac{374.7}{112.8}\right)=73.2^{\circ} \quad E 73.2^{\circ} \mathrm{N}
\end{aligned}
$$

23. Write the equation for the ellipse shown.

Center: $(2,-1)$

$$
\frac{(x-2)^{2}}{16}+\frac{(y+1)^{2}}{9}=1
$$

24. List the polar coordinates for the points shown.
$A:(4, \pi / 6)$
$B:(2,7 \pi / 4)$
$C:(3,5 \pi / 4)$
D: $(2,5 \pi / 6)$

26. Use back substitution to solve.
$\checkmark-33-8(-3)=-9 \begin{gathered}3 y-8 z=-9 \\ z=-3\end{gathered}$
25. a) Convert point D from problem 24 to
rectangular coordinates. $D:(2,5 \pi / 6)$
$x=2 \cos (5 \pi / 6)=-1.73$
$y=2 \sin (5 \pi / 6)=1$
$D:(-1.73,1)$
b) Convert (4, 4) to polar coordinates. $4(4 \sqrt{2}, 7 / 4) \quad[(5.66,-\pi / 4)]$

> cation to solve. $x-y+2 z=22 \quad 17+11-6=22 \mathrm{~V}$

$$
93 y-8 z=-9
$$

$$
3 y-8(-3)=-9 \quad x-(-11)+2(-3)=22
$$

$$
3 y+24=-9
$$

$$
x+11-6=22
$$

$$
3 y=-33
$$

$$
x+5=22
$$

$$
y=-11
$$

$$
x=17
$$

$$
(17,-11,-3)
$$

28. Write the following as an augmented matrix and then use a calculator to get it to RREF to solve it.

$$
\begin{gathered}
A=\left[\begin{array}{c}
4 x+y-3 z=-11 \\
2 x-3 y+2 z=9 \\
x+y+z=3
\end{array}\right] \\
\operatorname{rref}(A)=\left[\begin{array}{llll}
1 & 0 & 0 & 0.057 \\
0 & 1 & 0 & -0.6 \\
0 & 0 & 1 & 3.543
\end{array}\right]
\end{gathered}
$$

$$
(0.057,-0.6,3.543)
$$

30. Find the multiplicative inverse for matrix B from the prior problem.

$$
\begin{align*}
& B=\left[\begin{array}{cc}
a & -2 \\
8 & d \\
4 & b^{2}
\end{array}\right] \\
& B^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\frac{1}{0-(-8)}\left[\begin{array}{cc}
0 & 2 \\
-4 & 8
\end{array}\right] \\
& B^{-1}=\left[\begin{array}{cc}
0 & 1 / 4 \\
-1 / 2 & 1
\end{array}\right]
\end{align*}
$$

29. Let A and B be the matrices shown. Find the following:

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
-5 & 4 \\
2 & -9
\end{array}\right] \\
& 3 A-4 B \\
& {\left[\begin{array}{cc}
-15 & 12 \\
6 & -27
\end{array}\right]-\left[\begin{array}{cc}
32 & -8 \\
16 & 0
\end{array}\right]:\left[\begin{array}{ll}
-5(8)+4(4) & -5(-2)+4(0) \\
2(8)+(-9)(4) & 2(-2)+9(0)
\end{array}\right]} \\
& {\left[\begin{array}{cc}
-17 & 20 \\
-10 & -27
\end{array}\right]} \\
& B=\left[\begin{array}{ll}
8 & -2 \\
4 & \underline{2} \times \underline{2}
\end{array}\right] \\
& A \cdot B \\
& {\left[\begin{array}{ll}
-5(8)+4(4) & -5(-2)+4(0) \\
2(8)+(-9)(4) & 2(-2)+-9(0)
\end{array}\right]}
\end{aligned}
$$

31. In trying to solve the system using inverse
matrices, a student writes the following. Explain and then correct the error.
$-x+4 y=8$
$2 x-7 y=-5$
$\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}8 \\ -5\end{array}\right]\left(\left[\begin{array}{cc}-1 & 4 \\ 2 & -7\end{array}\right]\right.$
They multivliel on
the vrong side

$$
\underline{2 x}-3 y+2 z=9
$$

(1)
27. Get the following to Row Echelon form.

$$
4 x+y-3 z=-11
$$

$\begin{aligned} R_{1}-2 R_{2} & \rightarrow R_{2} \\ 4 x+y-3 z & =-11 \\ 7 y-7 z & =-29 \\ x+y+z & =3\end{aligned}$
$x+y+z=3$
$R_{1}-4 R_{3} \rightarrow R_{3}$
$4 x+y-3 z=-11$
(3) $\begin{aligned} & 3 R_{2}+7 R_{3} \rightarrow R_{3} \\ & 4 x+y-3 z=-11\end{aligned}$
$7 y-7 z=-29$
$-70 z=-248$
(4) $\begin{aligned} & -\frac{1}{70} R_{3} \rightarrow R_{3} \\ & 4 x+y-3 z=-11\end{aligned}$
$7 y-7 z=-29 \quad 21 y-21 z=-87$
$-3 y-7 z=-23-21 y-49 z=-161$

38. Use your result from $\# 37$ to find $f^{\prime}(1.5)$ and interpret what that means (note, the graph on $\# 36$ is the graph of

$$
\begin{array}{lll}
\left.f(x)=-x^{2}+3 x\right) . & f^{\prime}(1.5)=-2(1.5)+3 & \text { At } x=1.5 \text { on the original graph, the } \\
& f^{\prime}(1.5)=0 & \text { slope at } x=1.5 \text { is } 0 \text {, thus the graph } \\
\uparrow & \text { goes flat there. Based on the picture } \\
& & \text { we now Know the vertex's } x \text {-coordinates original function } \\
& \text { at } x=1.5 & \text { is } 1.5 .
\end{array}
$$

