\qquad

Semester 1 PRACTICE TEST

1. Given $f(x)$ is linear, $f(2)=6$, and the graph for $f(x)$ is perpendicular to $g(x)=\frac{1}{4} x-7$, find the equation for $f(x)$.

$$
\begin{aligned}
f(x) & =m x+b \\
f(x) & =-4 x+b \\
6 & =-4(2)+b \\
6 & =-8+b \\
14 & =b \quad f(x)=-4 x+14
\end{aligned}
$$

3. State the domain and range for each.

$$
\begin{aligned}
h(x) & =\sqrt{x-5} \\
x-5 & \geq 0 \\
x & \geq 5
\end{aligned}
$$

Domain: $x \geq 5$

Range: $y \geq 0$
2. Given the graph $f(x)$, fill in the blanks.
a) $f\left(\begin{array}{l}x \\)\end{array}=\underline{4}\right.$
b) $f(\underline{O})=l^{y}$

4. Graph.
$y= \begin{cases}\frac{\frac{1}{2} x+4,}{} & x \leq-2 \\ -\frac{1}{3} x-5, & \frac{x>-2}{x>}\end{cases}$

Simplify the complex expressions.

7. Let $f(x)=x^{2}+5 x$ and $g(x)=x-4$. Find:

9. Write the equation, in vertex form $f(x)=a(x-h)^{2}+k$, for the parabola that has a vertex of $(-6,2)$ and a y-intercept of $14 .(0,14)$

$$
\begin{aligned}
f(x) & =a(x+6)^{2}+2 \\
14 & =a(0+6)^{2}+2 \\
14 & =36 a+2 \\
12 & =36 a \\
\frac{1}{3} & =a \quad f(x)=\frac{1}{3}(x+6)^{2}+2
\end{aligned}
$$

10. Circle the correct end-behavior for each.
11. Sketch the graph of the polynomial and clearly mark
key points. $\quad x \rightarrow-x^{3}$
$-x^{2} \quad x=-1.5(x+1)^{2}(x-2)$
$0=-1.5(x+1)^{2}(x-2)$

$x=-1$
bounce
$y=2$
y-intercept: $(0,3$
$y=-1.5(1)^{2}(-2)=3$

13. Use the Rational Root/Zero Test to state all possible roots for $f(x)=x^{3}+3 x^{2}-6 x-8$
$\begin{gathered}\text { possible } \\ \text { roots }\end{gathered}=\frac{\text { factors of }-8}{\text { factors of } 1}=\frac{ \pm 1, \pm 2, \pm 4, \pm 8}{ \pm 1}= \pm 1, \pm 2, \pm 4, \pm 8$
14. Use long or synthetic division to divide and then find all the other factors.

$$
\begin{aligned}
& \left(2 x^{3}+x^{2}-25 x+12\right) \div(x-3)
\end{aligned}
$$

14. Find one that is actually a root (and how you know) from Problem 13.

$$
\begin{aligned}
& \begin{array}{l}
f(1)=1^{3}+3(1)^{2}-6(1)-8=1+3-6-8 \neq 0 \\
f(-1)=(-1)^{3}+3(-1)^{2}-6(-1)-8=-1+3+6-8=0
\end{array} \\
& \begin{array}{l}
(x+1) \text { is a factor since } x=-1 \\
\text { is a root }
\end{array} \\
& \text { 16. Simplify } \frac{4-5 i}{2+3 i} \\
& \frac{4-5 i}{2+3 i} \cdot \frac{(2-3 i)}{(2-3 i)}=\frac{8-12 i-10 i+15 i^{2}}{4-6 i+6 i-9 i^{2}}=\frac{8-22 i-15}{13} \\
& \frac{-7-22 i}{13}=\frac{-7}{13}-\frac{22}{13} i
\end{aligned}
$$

15. Simplify $(11-i)-(-2+5 i)$

$$
\begin{aligned}
& (11-i)-(-2+5 i) \\
& 11-i+2-5 i=13-6 i
\end{aligned}
$$

17. Solve $4 x^{2}+10=-26$ using complex numbers.

$$
\begin{aligned}
4 x^{2} & =-36 \\
\sqrt{x^{2}} & =\sqrt{-9} \\
x & = \pm 3 i
\end{aligned}
$$

18. Find a fourth-degree polynomial that has zeros 2,3 , and $-5(-5$ has multiplicity 2$)$ and $f(0)=50$

$$
\begin{aligned}
& f(x)=a(x-2)(x-3)(x+5)^{2}= \\
& 50=a(0-2)(0-3)(0+5)^{2} \\
& \frac{50}{150} \frac{a(150)}{150} \quad a=\frac{1}{3} \quad f(x)=\frac{1}{3}(x-2)(x-3)(x+5)^{2}
\end{aligned}
$$

19. State the vertical and horizontal asymptotes) of each function.

20. Make a table and graph $f(x)=4(0.5)^{x}+2$

21. Evaluate each and justify by writing in exponential form.
$\ln (\sqrt{e})=1 / 2$ since $e^{1 / 2}=\sqrt{e}$
$\log _{10}(1000)=3$ since $10^{3}=1000$
$\log _{10}\left(\frac{1}{100}\right)=-2$ since $10^{-2}=\frac{1}{10^{2}}=\frac{1}{100}$ 10^{-2}
$\log _{4}(64)=3$ since $4^{3}=64$ $\log _{b}(a)=n \rightarrow b^{n}=a$
22. Solve for x .
a) $\ln (x-4)-5=-3$

$$
\ln (x-4)=2 \rightarrow \frac{e^{2}=x-4}{e^{2}+4=x} \approx 11.39
$$

b) $16^{x}-8=56$

$$
\begin{aligned}
& 16^{x}=64 \\
& \log \left(16^{x}\right)=\log (64) \\
& x \cdot \log (16)=\log (64) \\
& x=\frac{\log (64)}{\log (16)}=1.5
\end{aligned}
$$

22. Find the value of an investment of $\$ 40,000$ for 5 years at an interest rate of 3% if the money is compounded:
a) monthly
$A=P\left(1+\frac{r}{n}\right)^{n t}$

$$
A=40,000\left(1+\frac{.03}{12}\right)^{12(5)}
$$

b) continuously

$$
A=P e^{r t}=40,000 e^{0.03(5)}=46,473.37
$$

24. In 1970, the US population was 203 million. By, 2010 it was 308 million. Use these to find the exponential equation ($A=A_{0} e^{k t}$) for the US population, in millions, t years after 1970.

$$
\begin{aligned}
& A=203 e^{k t} \\
& 308=203 e^{40 K} \quad K=0.0104 \\
& 308=e^{40 K} \\
& \ln (308 / 203)=\ln \left(e^{40 \mathrm{k}}\right) \\
& \begin{array}{l}
\ln (308 / 203)=\ln \left(e^{2}\right)=1 \\
\ln (308 / 203)=40 K \cdot 203 e^{0.0104 t}
\end{array}
\end{aligned}
$$

26. How long will it take for the continuous investment in Problem 22 to double?
$z=e^{0.03 t}$
$\ln (2)=0.03+\ln (e))^{=1}$

$$
t=\frac{\ln (2)}{0.03}=23.1 \mathrm{yrs}
$$

