Honors Precalculus	Name:		Per:
Semester 1 PRACTICE T	EST Use an extra shee	et to show work if you run out of room	n.
1. Given $f(x)$ is linear, $f(2 f(x))$ is perpendicular to generation for $f(x)$.) = 6, and the graph for $g(x) = \frac{1}{4}x - 7$, find the	 2. Given the graph f(x), fill in the blanks. a) f(3) = b) f() = 1 	y = f(x)
2 State the demain and m	ange for each	4 Craph	
5. State the domain and rate $h(x) = \sqrt{x-5}$	ange for each.	4. Graph. $y = \begin{cases} \frac{1}{2}x + 4, & x \le -2 \\ -\frac{1}{3}x - 5, & x > -2 \end{cases}$	
Domain:	Domain:		
Range:	Range:		
Simplify the complex express	sions.	I.	
5. Given the table for $f(x)$, fill in the table for $g(x)$ if $g(x) = 2f(x - 4) + 5$.		6. Let $f(x) = x^2 + 3x$ and $g(x) = f(x) = g$	f/g = -2x - 6. Find:
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>2</u> -5	fg	
<i>g</i> (<i>x</i>)			

7. Let $f(x) = x^2 + 5x$ and $g(x) = x - 4$. Find:			
f(g(1))	g(f(1))	f(g(x))	

8. Find the inverse function of $f(x) = 3x + 2$ and graph both.		9. Write the equation, in $f(x) = a(x - h)^2 + k$ vertex of (-6, 2) and a	vertex form z, for the parabola that has a y-intercept of 14.
		-	
10. Circle the correct end-beh	avior for each.		
$f(x) = x^3 - 4x^2$ $a^{a} \neq b^{b} \neq e^{a}$ $c^{b} \neq d^{b} \neq e^{a}$	$f(x) = -x^{4}(x+2)$ $a)_{\checkmark} \nearrow b)_{\checkmark} \checkmark$ $c)_{\checkmark} \Rightarrow d)_{\checkmark} \checkmark$	$f(x) = x^{2} + 4$ $\stackrel{a)}{\checkmark} \stackrel{b)}{\checkmark} \stackrel{\checkmark}{\checkmark}$ $\stackrel{c)}{\checkmark} \stackrel{d)}{\checkmark} \stackrel{\checkmark}{\checkmark}$	$f(x) = -x^{3}(x-1)^{3}$ $\stackrel{a)}{\swarrow} \stackrel{b)}{\checkmark} \stackrel{\checkmark}{\checkmark}$ $\stackrel{c)}{\searrow} \stackrel{d)}{\checkmark} \stackrel{\checkmark}{\checkmark}$
11. Sketch the graph of the po- key points. $y = -1.5(x + 1)^2(x - 2)$	lynomial and clearly mark	12. Use long or synthetic c all the other factors. $(2x^3 + x^2 - 2)$	livision to divide and then find $5x + 12) \div (x - 3)$
y -intercept: (,)			
13. Use the Rational Root/Zer roots for $f(x) = x^3 + 3x^3$	To Test to state all possible $x^2 - 6x - 8$	14. Find one that is actuall from Problem 13.	y a root (and how you know)
15. Simplify $(11 - i) - (-2)$	+ 5 <i>i</i>)	16. Simplify $\frac{4-5i}{2+3i}$	
17. Solve $4x^2 + 10 = -26$ u	ising complex numbers.	18. Find a fourth-degree po and -5 (-5 has multiplie	olynomial that has zeros 2, 3, city 2) and $f(0) = 50$

19. State the vertical and horizontal asymptote(s) of each function.		
$y = \frac{-2}{x+6}$	$=\frac{2x^2}{x^2+7x+12}$	
VA: VA	Δ:	
HA: HA	Δ:	
20. Put all this together and sketch a graph of the rational f HA: VA:	unction $f(x) = \frac{x-1}{x^2 + x - 6}$ 5	
Zero(s): Y-int:	-5 0 5 -5	
21. Make a table and graph $f(x) = 4(0.5)^{x} + 2$	22. Find the value of an investment of \$40,000 for 5 years at an interest rate of 3% if the money is compounded:	
	a) monthly	
	b) continuously	
23. Evaluate each and justify by writing in exponential form. $ln(\sqrt{e}) = _$ since	24. In 1970, the US population was 203 million. By, 2010 it was 308 million. Use these to find the exponential equation $(A = A_0 e^{kt})$ for the US population, in millions, t years after 1970.	
$log(1000) = \ since$		
$log\left(\frac{1}{100}\right) = $ since		
$log_4(64) = _$ since		
25. Solve for x. a) $\ln(x-4) - 5 = -3$	26. How long will it take for the continuous investment in Problem 22 to double?	
b) $16^x - 8 = 56$		

27. Sketch in each of the angles and mark them on the	28. If an angle of 2 radians
graph.	on a circle of radius 5 is
Ť	shown, what is the
a) $\frac{5\pi}{2}$	length of the arc?
3	2 radians
← ↓ ↓ ↓	
b) $-\frac{7\pi}{2}$	
6	
Ļ	
29. Convert between radians and degrees and vice versa.	30. For the triangle shown, find the following.
π	A
$\frac{\pi}{8} = \underline{\qquad}^{\circ}$	
	12
<u>13π</u> ο	
12	B C
$150^{\circ} = _$	
240° =	$m \land A = B \land C = A \land C =$
31. Use basic trig identities to prove the following.	32. Find the coordinates (x, y) on the unit circle for the
	given radian measure. *Circle provided if needed.
a) $\cot\theta \cdot \sin\theta = \cos\theta$	57
	$\theta = -\frac{3\pi}{4} (\qquad , \qquad)$
b) $(1 + \cos \theta)(1 - \cos \theta) = \sin^2 \theta$	
$(1 + \cos \theta)(1 - \cos \theta) = \sin \theta$	
	+
33. For each, find the indicated trig value in the	34. Given the coordinates of
specified quadrant. Write answers as fractions!	the point are on the
Function Quadrant Value Desired	terminal side of an angle
$\sin(\theta) = -8/17$ IV $\tan(\theta) =$	in standard position, find
	all six trig function values.
$\cot(\theta) = 3/4$ III $\sin(\theta) =$	
	(-5,-12)
	$\sin A - \cos A - \tan A -$
	$\int \csc \theta = \cot \theta = \cot \theta =$