Honors 1

Chapter 7 PRACTICE TEST

Name:

Simplify the expression in #1-6. Don't leave an answer with a negative exponent.

	pmy me expr
1.	$(3x^4)(-5x^6)$
	-15×10

$$\frac{3. \left(\frac{4x^3y^6}{3x^5y}\right)^3}{4^3x^9y^{18}} = \frac{64y^{15}}{27x^6}$$

4.
$$\frac{42x^{2}y^{-12}}{-16x^{-5}y^{-3}z^{2}}$$

$$\frac{-2|x^{7}y^{3}|}{8|y^{12}|z^{2}} = \begin{bmatrix} -2|x^{7}|\\ 8|y^{9}|z^{2} \end{bmatrix}$$

5.
$$\left(\frac{a^4c^{-7}}{d^5}\right)\left(\frac{5a^{-12}c^{17}}{d^{-2}}\right)^0$$

9. Compute.
$$\frac{125 \times 6}{8 \times 3} \cdot \frac{y^{-6}}{2^{-1} \times 1} = \frac{125 \times 6}{8 \times 3} \cdot \frac{\cancel{4}}{\cancel{5} \times \cancel{5}} = \frac{125 \times 6}{\cancel{5} \times \cancel{5}} \cdot \frac{\cancel{4}}{\cancel{5} \times \cancel{5}} = \frac{125 \times \cancel{4}}{\cancel{5} \times \cancel{5}} = \frac{125 \times \cancel{5}}{\cancel{5} \times \cancel{5}} = \frac{\cancel{5} \times \cancel{5}}{\cancel{5}} = \frac{\cancel{5} \times \cancel{5}}{$$

$$\sqrt{64x^5} = 8x^{5/2}$$

$$\overbrace{5\cdot\sqrt[3]{x}}^{5x^{\frac{1}{3}}}$$

$$(16^{1/2})^3 = 4^3 = 64$$

10. Convert 1.255×10^6 to standard form.

12. Solve
$$9^{x-3} = 81$$

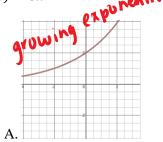
$$9^{x-3} = 9^2 \le 0$$

 $x-3=2 \Rightarrow [x=5]$

13. What is the area of a triangle whose height is $14x^2y$ and base is $3x^5y^3$?

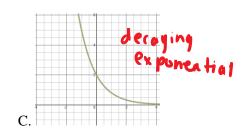
$$A = \frac{1}{2} (14x^{2}y) (3x^{5}y^{3})$$

$$A = \frac{1}{2} (42x^{7}y^{4}) = 2 |x^{7}y^{4}|$$


14. For every increase of 1 on the Richter scale an earthquake releases approximately 31 times as much energy. How much more energy does an earthquake measuring 8 release than one measuring 5?

15. Evaluate the following and write your answer in scientific notation. 5.8×10^{16}

$$\frac{3.6 \times 10^{3}}{(2.47 \times 10^{3})(3 \times 10^{-2})}$$
783 × 10¹⁵


Match the function with its graph (yes, not every graph will be used).

16. $\mathbf{b} f(x) = 3x - 1$

17.
$$A f(x) = 2(1.4)^x$$

Write a rule for the function based on the table.

18.					
x	-2	-1	0	1	2
y	.125	.25	.5	1	2
	\/ -	۸٤	(2)x		

- 0.5 (1)

19.								
x	-2	-1	0	1	2			
у	256	64	16	4	1			
$y = 16 \cdot \left(\frac{1}{4}\right)^{x}$								

Use this information:

You bought a pair of autographed Michael Jordan shoes for \$75 in 2008. The shoes appreciate (increases value) at a rate of 20% annually.

20. Write an exponential growth equation that represents the situation.

$$y = 75(1.2)^{x}$$

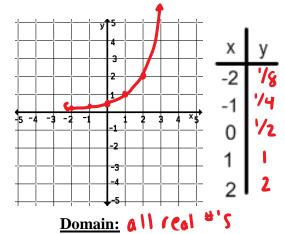
21. Find the value of the shoes currently.

I did it for the year 2016.

Use this information:

A block of MathoniumTM decays 12% per day. You started with 45kg of MathoniumTM.

22. Write an equation that represents the amount of MathoniumTM remaining after d days.


23. Find the mass of the MathoniumTM after 2 weeks.

Graph the functions then state the domain and range

24.
$$y = -3^x$$
 $y = -1 \cdot (3)^x$

25.
$$y = \frac{1}{2}(2)^x$$

- A

Range: y > 0