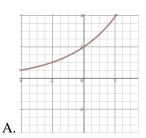
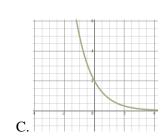
Honors 1

Chapter 7 PRACTICE TEST


Simplify the expression in #1-6. Don't leave an answer with a negative exponent


Simplify the expression in #1-6. Don't leave an answer with a negative exponent.				
1. $(3x^4)(-5x^6)$	2. $(-3x^4)^5$	$3. \left(\frac{4x^3y^6}{3x^5y}\right)^3$		
$4. \ \frac{42x^2y^{-12}}{-16x^{-5}y^{-3}z^2}$	$5. \ \left(\frac{a^4c^{-7}}{d^5}\right) \left(\frac{5a^{-12}c^{17}}{d^{-2}}\right)^0$	$6. \left(\frac{5x^2}{2y}\right)^3 \cdot \left(\frac{y^3}{2x^{-1}}\right)^{-2}$		
7. Simplify. $\sqrt{64x^5}$	8. Write with radicals. $5x^{\frac{1}{3}}$	9. Compute. $16^{\frac{3}{2}}$		

10. Convert 1.255 × 10 ⁶ to standard form.	11. Convert 0.0003402 to scientific notation.	12. Solve $9^{x-3} = 81$
13. What is the area of a triangle whose height is $14x^2y$ and base is $3x^5y^3$?	14. For every increase of 1 on the Richter scale an earthquake releases approximately 31 <i>times</i> as much energy. How much more energy does an earthquake measuring 8 release than one measuring 5?	15. Evaluate the following and write your answer in scientific notation. $ \frac{5.8 \times 10^{16}}{(2.47 \times 10^{3})(3 \times 10^{-2})} $

Match the function with its graph (yes, not every graph will be used).

16.
$$_{---}f(x) = 3x - 1$$

17. $\underline{\hspace{1cm}} f(x) = 2(1.4)^x$

Write a rule for the function based on the table.

18.					
x	-2	-1	0	1	2
у	.125	.25	.5	1	2

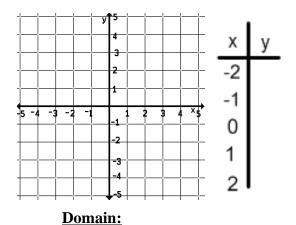
19.					
x	-2	-1	0	1	2
у	256	64	16	4	1
	•				

Use this information:

You bought a pair of autographed Michael Jordan shoes for \$75 in 2008. The shoes appreciate (increases value) at a rate of 20% annually.

- 20. Write an exponential growth equation that represents the situation.
- 21. Find the value of the shoes in 2016.

Use this information:


24. $y = -3^x$

A block of MathoniumTM decays 12% per day. You started with 45kg of MathoniumTM.

- 22. Write an equation that represents the amount of MathoniumTM remaining after d days.
- 23. Find the mass of the MathoniumTM after 2 weeks.

Graph the functions then state the domain and range

25.
$$y = \frac{1}{2}(2)^x$$

Domain:

Range:

Range: