#### 7.1 – Applying Exponent Product Properties

<u>Lead-In</u>: In 2003, the US Department of Agriculture (USDA) collected data on 10<sup>3</sup> bee colonies. If each colony contains 10<sup>4</sup> bees, how many bees did the USDA include in their study?

# Exponents are used to communicate repeated \_\_\_\_\_\_

| a <sup>2</sup>    | a <sup>3</sup>    | $a^2 \cdot a^3$        |
|-------------------|-------------------|------------------------|
|                   |                   |                        |
| $6n^3 \cdot 2n^7$ | $(3pt^3)(p^3t^4)$ | Product of Powers Rule |
|                   |                   |                        |
|                   |                   |                        |
|                   |                   |                        |

### Power of Powers Property

| $(x^2)^3$ |                                                           |                          | $(y^3)^5$ |            |            |   | Power of Power Property |
|-----------|-----------------------------------------------------------|--------------------------|-----------|------------|------------|---|-------------------------|
|           |                                                           |                          |           |            |            |   |                         |
|           |                                                           |                          |           |            |            |   |                         |
| Example:  | Simplify [(2 <sup>3</sup> ) <sup>2</sup> ] <sup>4</sup> . |                          |           |            |            |   |                         |
|           | <b>A</b> 2 <sup>24</sup>                                  | <b>B</b> 2 <sup>12</sup> |           | $C 2^{10}$ | <b>D</b> 2 | 9 |                         |

#### Power of a Product Property

| $(6x)^4$ | $(4m^2n)^3$ | Power of Product Property |
|----------|-------------|---------------------------|
|          |             |                           |
|          |             |                           |
|          |             |                           |

# Challenging Ones!!!

| $((x^2y)^6)^5$ | $(3xy^4)^2[(-2y)^2]^3$ |
|----------------|------------------------|
|                |                        |
|                |                        |
|                |                        |
|                |                        |
|                |                        |
|                |                        |

#### 7.2 – Applying Exponent Properties Involving Quotients, Negative Exponents and Zero Exponents

<u>Lead-In</u>: To measure the brightness (luminosity) of a star, we measure how much power it puts out, in watts. Our Sun produces 10<sup>26</sup> W, and Canopus has a luminosity of 10<sup>30</sup> W. How many times more power does Canopus produce?

| <i>a</i> <sup>5</sup> | Example: | Quotient of Powers Rule |
|-----------------------|----------|-------------------------|
| $\overline{a^3}$      |          |                         |
|                       |          |                         |
|                       |          |                         |

## All Exponent Properties

| $a^m \cdot a^n = a^{m+n}$ | $(a^m)^n = a^{mn}$ | $(ab)^m = a^m b^m$ | $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$ | $\frac{a^m}{a^n} = a^{m-n}$ |
|---------------------------|--------------------|--------------------|------------------------------------------------|-----------------------------|
|                           |                    |                    |                                                |                             |

# Examples

| $\frac{5^3 \cdot 5^5}{5^2}$ | $\left(\frac{2a^4b^3}{ab^2}\right)^2$ | $\frac{2s^3t^3}{st^2} \cdot \frac{(3st)^3}{s^2t}$ |
|-----------------------------|---------------------------------------|---------------------------------------------------|
|                             |                                       |                                                   |
|                             |                                       |                                                   |
|                             |                                       |                                                   |

# a. Tabular Fill in the table from left to right

| Power | 3 <sup>4</sup> | 3 <sup>3</sup> | 3 <sup>2</sup> | 3 <sup>1</sup> | 3 <sup>0</sup> | 3 <sup>-1</sup> | 3 <sup>-2</sup> | 3 <sup>-3</sup> | 3 <sup>-4</sup> |
|-------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|
| Value |                |                |                |                |                |                 |                 |                 |                 |

| $\frac{\text{Negative and Zero Exponents}}{a^0} =$ |  |
|----------------------------------------------------|--|
| $a^{-n} =$                                         |  |
| $\frac{1}{a^{-n}} =$                               |  |

What about 
$$\frac{1}{4^{-1}}$$
?

#### **Example**

| $ \frac{\frac{\text{Method 1}}{-8x^2y^8z^{-5}}}{12x^4y^{-7}z^7} = \left(\frac{-8}{12}\right)\left(\frac{x^2}{x^4}\right)\left(\frac{y^8}{y^{-7}}\right)\left(\frac{z^{-5}}{z^7}\right) \\ = \left(\frac{-2}{3}\right)(x^{2-4})(y^{8-(-7)})(z^{-5-7}) $ | $\frac{\frac{\text{Method 2}}{-8x^2y^8z^{-5}}}{12x^4y^{-7}z^7}$ | $\frac{(5pr^{-2})^{-2}}{(3p^{-1}r)^3}$ | $\left(-\frac{3xy^4z^2}{x^3yz^4}\right)^0$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------|--------------------------------------------|
|                                                                                                                                                                                                                                                        |                                                                 |                                        |                                            |
|                                                                                                                                                                                                                                                        |                                                                 |                                        |                                            |
|                                                                                                                                                                                                                                                        |                                                                 |                                        |                                            |

#### 7.3 – Rational Exponents

$$\left(\sqrt{5}\right)^2 =$$
, so  $\sqrt{5}$  is equal to 5 to what power?

What if this was the cube root of 5?

What if this was the nth root of 5?

Second second

| Write each in radical form or with an | exponent. | Simplify and state the answer. |      |
|---------------------------------------|-----------|--------------------------------|------|
| $25^{\frac{1}{2}}$ $2\sqrt{x}$        |           | 3√27                           | 5√32 |
|                                       |           |                                |      |

#### If we can do fractions like 1/2, 1/3, and 1/4, how do we interpret exponents with other fractions?

 $64^{\frac{2}{3}}$ 

 $36^{\frac{3}{2}}$ 

KeyConcept $b^{\frac{m}{n}}$ WordsFor any positive real number b and any integers m and n > 1,<br/> $b^{\frac{m}{n}} = (\sqrt[q]{b})^m$  or  $\sqrt[q]{b^m}$ .Example $8^{\frac{2}{3}} = (\sqrt[q]{8})^2 = 2^2$  or 4

**Example**: Putting all the pieces together.

| $(8^2)^{2/3}$ | $(81^{1/4})^{-2}$ | Solve for x. |
|---------------|-------------------|--------------|
|               |                   | $9^{x} = 27$ |
|               |                   |              |
|               |                   |              |
|               |                   |              |
|               |                   |              |
|               |                   |              |
|               |                   |              |
|               |                   |              |
|               |                   |              |

#### 7.5 Day 1 – Write and Graph Exponential Growth Functions

<u>Lead – In :</u> You have \$10 in a bank account and are given each of the following options:

a) \$50 will be added to the account each week

b) The account will double each week

Weeks 0

Which is the better deal after 4 weeks? After 6 weeks?

| Weeks | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|-------|---|---|---|---|---|---|---|
| \$    |   |   |   |   |   |   |   |

**Example**: Write an equation for the function.

| x | -2 | -1 | 0 | 1 | 2 |
|---|----|----|---|---|---|
| у | -4 | -1 | 2 | 5 | 8 |

| x | -2 | -1 | 0 | 1  | 2  |
|---|----|----|---|----|----|
| y | 2  | 4  | 8 | 16 | 32 |

**Example**: Graph the function  $y = 2^x$  and identify the domain and range. Note:  $y = 2^x = 1(2^x)$ 

| х  | у | 6 <sup>4y</sup> | Domain: |
|----|---|-----------------|---------|
| -2 |   |                 |         |
| -1 |   | 4               |         |
| 0  |   | 3               | Range:  |
| 1  |   | 2               |         |
| 2  |   | 1               |         |
|    |   |                 |         |

**Example**: Graph the function  $y = -4(1.5)^{\chi}$  and identify the domain and range.

| х  | у | -6 | -5 | -4 | -3 - | 2 -1 |    | 1 |   | 3 4 | 5 | - × | Dom  |
|----|---|----|----|----|------|------|----|---|---|-----|---|-----|------|
| -2 |   | -0 | -5 | -4 | -3 - | 2 -  | -1 |   | 2 | 5 4 | 5 | -   |      |
| -1 |   | -  | -  | -  | _    |      | -2 |   |   |     |   |     |      |
| 0  |   |    |    | -  |      |      | -3 |   |   |     |   |     | Rang |
| 1  |   |    |    |    |      |      | -4 |   |   |     |   |     |      |
| 2  |   |    |    |    |      |      | -6 |   |   |     |   |     |      |

**Example**: The function  $C = 179(1.029)^t$  models the amount of soda, in billions of liters, consumed in the world, where t is the years after 2000.

a) What does the y-intercept represent in this context?

b) What are realistic domain and ranges?

c) Use the equation to estimate the amount of soda consumed throughout the world this year.



#### 7.5 Day 2 – Write and Graph Exponential Decay Functions

<u>Lead-In</u>: Take a piece of yarn 1yd long and cut it in half. Continue this process.

| Stage | Number of Pieces | Length of Each Piece |
|-------|------------------|----------------------|
| 0     | 1                | 1                    |
| 1     |                  |                      |
| 2     |                  |                      |
| 3     |                  |                      |
| 4     |                  |                      |

a) Write a function for the number of pieces at stage *x*.

b) Write a function for the length of each piece at stage *x*.

**Example**: Write the equation for the exponential function.

| 2 | 2 | -2 | -1 | 0 | 1 | 2 |
|---|---|----|----|---|---|---|
| у |   | 32 | 16 | 8 | 4 | 2 |

Exponential Growth Functions:

**Exponential Decay Functions:** 

Example:

Graph  $f(x) = 2\left(\frac{1}{2}\right)^x$  and  $g(x) = 2(2)^x$  on the graph to the right and compare.



**Example**: Graph and state the domain and range of each.



y

0

Domain:

Range:

**Example**: Determine whether the set of data shown below displays exponential behavior. If so, write an exponential equation. If not, explain why not.

| x | -2   | -1 | 0   | 1   | 2    | x | -2  | -1  | 0  | 1 | 2 | x | -4   | -2  | 0 | 2 | 4  |
|---|------|----|-----|-----|------|---|-----|-----|----|---|---|---|------|-----|---|---|----|
| у | -4/3 | -4 | -12 | -36 | -108 | у | -18 | -12 | -6 | 0 | 6 | у | 1/16 | 1/4 | 1 | 4 | 16 |

Ex:

Ex:

### 7.6 – Growth and Decay Equations

#### **Modeling Population Growth**

The population of Helena in the year 2000 was 23,000. The U.S. Census Bureau found that the population then increased, on average, by 2% each year. What was the population in 2005?

| Year       | 0 | 1 | 2 | 3 | 4 | 5 |
|------------|---|---|---|---|---|---|
| Population |   |   |   |   |   |   |

**Example**: An investor places \$250,000 in an account that earns 4% interest each year. How much will it be worth in 5 years?



**Decay Example**: A car is purchased for \$18,996. The car depreciates at a rate of 15% per year. After 6 years, the owner is offered \$7500 for it. Is this a fair deal?



#### **Exponential Situations Example:** Write a formula for each situation.

| ginally 5.4 grams of a radioactive<br>It decays at a rate of 4.69% per | In 1850, there were 20 million bison in the<br>United States, but they began to decline by<br>2% each year. |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|

Compound Interest:





**Example**: Re-answer the savings account example from above if the interest is compounded:

Monthly:

Daily:

**Example**: Match the graph to its equation.



