\qquad

Chapter 7 Notes

7.1 - Applying Exponent Product Properties

Lead-In: In 2003, the US Department of Agriculture (USDA) collected data on 10^{3} bee colonies. If each colony contains 10^{4} bees, how many bees did the USDA include in their study?

Exponents are used to communicate repeated \qquad

a^{2}	a^{3}	$a^{2} \cdot a^{3}$
$6 n^{3} \cdot 2 n^{7}$	$\left(3 p t^{3}\right)\left(p^{3} t^{4}\right)$	Product of Powers Rule

Power of Powers Property

$\left(x^{2}\right)^{3}$	$\left(y^{3}\right)^{5}$	Power of Power Property

Example: \quad Simplify $\left[\left(2^{3}\right)^{2}\right]^{4}$.
A 2^{24}
B 2^{12}
C 2^{10}
D 2^{9}

Power of a Product Property

$(6 x)^{4}$	$\left(4 m^{2} n\right)^{3}$	Power of Product Property

Challenging Ones!!!

$\left(\left(x^{2} y\right)^{6}\right)^{5}$	$\left(3 x y^{4}\right)^{2}\left[(-2 y)^{2}\right]^{3}$

7.2 - Applying Exponent Properties Involving Quotients, Negative Exponents and Zero Exponents

Lead-In: To measure the brightness (luminosity) of a star, we measure how much power it puts out, in watts. Our Sun produces $10^{26} \mathrm{~W}$, and Canopus has a luminosity of $10^{30} \mathrm{~W}$. How many times more power does Canopus produce?

$\frac{a^{5}}{a^{3}}$	Example:	Quotient of Powers Rule

All Exponent Properties

$a^{m} \cdot a^{n}=a^{m+n}$	$\left(a^{m}\right)^{n}=a^{m n}$	$(a b)^{m}=a^{m} b^{m}$	$\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$	$\frac{a^{m}}{a^{n}}=a^{m-n}$

Examples

$\frac{5^{3} \cdot 5^{5}}{5^{2}}$	$\left(\frac{2 a^{4} b^{3}}{a b^{2}}\right)^{2}$	$\frac{2 s^{3} t^{3}}{s t^{2}} \cdot \frac{(3 s t)^{3}}{s^{2} t}$

a. Tabular Fill in the table from left to right

Power	3^{4}	3^{3}	3^{2}	3^{1}	3^{0}	3^{-1}	3^{-2}	3^{-3}	3^{-4}
Value									

What about $\frac{1}{4^{-1}}$?
Example

$\begin{aligned} & \frac{\text { Method } 1}{\frac{-8 x^{2} y^{8} z^{-5}}{12 x^{4} y^{-7} z^{7}}}=\left(\frac{-8}{12}\right)\left(\frac{x^{2}}{x^{4}}\right)\left(\frac{y^{8}}{y^{-7}}\right)\left(\frac{z^{-5}}{z^{7}}\right) \\ & \quad=\left(\frac{-2}{3}\right)\left(x^{2-4}\right)\left(y^{8-(-7)}\right)\left(z^{-5-7}\right) \end{aligned}$	Method 2 $\frac{-8 x^{2} y^{8} z^{-5}}{12 x^{4} y^{-7} z^{7}}$	$\frac{\left(5 p r^{-2}\right)^{-2}}{\left(3 p^{-1} r\right)^{3}}$	$\left(-\frac{3 x y^{4} z^{2}}{x^{3} y z^{4}}\right)^{0}$

7.3-Rational Exponents

$(\sqrt{5})^{2}=$
, so $\sqrt{5}$ is equal to 5 to what power?

What if this was the cube root of 5 ?
What if this was the nth root of 5 ?

Write each in radical form or with an exponent. $25^{\frac{1}{2}}$	Simplify and state the answer. $\sqrt[3]{27}$	$\sqrt[5]{32}$

If we can do fractions like $1 / 2,1 / 3$, and $1 / 4$, how do we interpret exponents with other fractions?
$64^{\frac{2}{3}}$
$36^{\frac{3}{2}}$

5) KeyConcept $b^{\frac{m}{n}}$

Words \quad For any positive real number b and any integers m and $n>1$,

$$
b^{\frac{m}{n}}=(\sqrt[n]{b})^{m} \text { or } \sqrt[n]{b^{m}}
$$

Example $\quad 8^{\frac{2}{3}}=(\sqrt[3]{8})^{2}=2^{2}$ or 4

Example: Putting all the pieces together.

$\left(8^{2}\right)^{2 / 3}$	$\left(81^{1 / 4}\right)^{-2}$	Solve for x.	$9^{x}=27$

7.5 Day 1 - Write and Graph Exponential Growth Functions

Lead - In : You have $\$ 10$ in a bank account and are given each of the following options:
a) $\$ 50$ will be added to the account each week
b) The account will double each week

Which is the better deal after 4 weeks? After 6 weeks?

Example: Write an equation for the function.

\mathbf{x}	-2	-1	$\mathbf{0}$	1	$\mathbf{2}$
\mathbf{y}	-4	-1	$\mathbf{2}$	5	8

\mathbf{x}	-2	-1	$\mathbf{0}$	1	2
\mathbf{y}	2	4	$\mathbf{8}$	16	32

Example: Graph the function $y=2^{x}$ and identify the domain and range. Note: $y=2^{x}=1\left(2^{x}\right)$

x	y
-2	
-1	
0	
1	
2	

Domain:

Range:

Example: Graph the function $y=-4(1.5)^{x}$ and identify the domain and range.

x	y
-2	
-1	
0	
1	
2	

Example: The function $C=179(1.029)^{t}$ models the amount of soda, in billions of liters, consumed in the world, where t is the years after 2000.
a) What does the y-intercept represent in this context?
b) What are realistic domain and ranges?
c) Use the equation to estimate the amount of soda consumed throughout the world this year.

Domain:

Range:

Exponential Growth Functions

Equation: $f(x)=a b^{x}, a>0, b>1$
Domain: \qquad Range: \qquad
y-intercept: \qquad x-intercept: \qquad
End behavior: as x increases, $f(x)$ as x decreases, $f(x)$ \qquad

7.5 Day 2 - Write and Graph Exponential Decay Functions

Lead-In: Take a piece of yarn 1yd long and cut it in half. Continue this process.

Stage	Number of Pieces	Length of Each Piece
0	1	1
1		
2		
3		
4		

a) Write a function for the number of pieces at stage x.
b) Write a function for the length of each piece at stage x.

Example: Write the equation for the exponential function.

\mathbf{x}	-2	-1	$\mathbf{0}$	1	2
\mathbf{y}	32	16	$\mathbf{8}$	4	2

Exponential Growth Functions:
Ex:

Exponential Decay Functions:

Ex:

Example:

Graph $f(x)=2\left(\frac{1}{2}\right)^{x}$ and $g(x)=2(2)^{x}$ on the graph to the right and compare.

Example: Graph and state the domain and range of each.
$y=2 \cdot\left(\frac{1}{5}\right)^{x}$

Domain:
Range:
$y=2\left(\frac{1}{5}\right)^{x}-3$

x			0		
y					

Domain:
Range:

Example: Determine whether the set of data shown below displays exponential behavior. If so, write an exponential equation. If not, explain why not.

x	-2	-1	0	1	2	x	-2	-1	0	1	2	x	-4	-2	0	2	4
y	-4/3	-4	-12	-36	-108	y	-18	-12	-6	0	6	y	1/16	1/4	1	4	16

7.6 - Growth and Decay Equations

Modeling Population Growth

The population of Helena in the year 2000 was 23,000 . The U.S. Census Bureau found that the population then increased, on average, by 2% each year. What was the population in 2005?

Year	0	1	2	3	4	5
Population						

Example: An investor places $\$ 250,000$ in an account that earns 4% interest each year. How much will it be worth in 5 years?

KEY CONCEPT for Your Notebook

Exponential Growth Model

KEY CONCEPT For Your Wotebook
Exponential Decay ModeI

Exponential Situations Example: Write a formula for each situation.

A rare coin is purchased from a dealer at a value of $\$ 300$. The value of the coin increases 7.5% each year.	There is originally 5.4 grams of a radioactive element that decays at a rate of 4.69% per year.	In 1850 , there were 20 million bison in the United States, but they began to decline by 2% each year.

Compound Interest:

KeyConcept Equation for Compound Interest

Example: Re-answer the savings account example from above if the interest is compounded:
Monthly:

Daily:

$$
y=2(0.2)^{x}
$$

Example: Match the graph to its equation.

$$
\begin{aligned}
& y=2(0.8)^{x} \\
& y=(1.5)^{x}
\end{aligned}
$$

