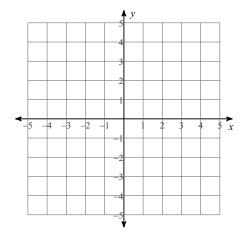

Chapter 6 PRACTICE Test


Period____

Solve each system by graphing if possible.

1)
$$y = -\frac{1}{2}x + 3$$

 $y = -3x - 2$

2)
$$x = 4$$

 $y = \frac{1}{2}x - 3$

Solve each system by ELIMINATION.

3)
$$-4x + 5y = 7$$

 $4x - 3y = -1$

4)
$$5x - 3y = -7$$

 $8x - 3y = -13$

5)
$$-4x + 6y = -12$$

 $8x - 12y = 24$

6)
$$2x - 3y = -5$$

 $-9x + 4y = 13$

Solve each system by SUBSTITUTION.

7)
$$3x + 6y = -3$$

 $y = -3x - 18$

8)
$$y = 3x - 5$$

 $-x + 4y = 2$

9)
$$-x + y = 5$$

 $-8x - y = 4$

10)
$$-3x + 9y = 1$$

 $x - 3y = -7$

Solve the system by using the method of your choice. Justify your choice of method.

11)
$$5x + y = -13$$

 $-3x + 2y = 13$

12)
$$-7x - 6y = -4$$

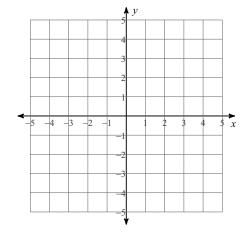
 $14x + 12y = 8$

13)
$$y = 4x - 8$$

 $y = 7x - 20$

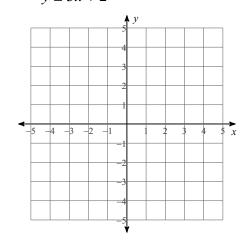
14)
$$y = -7x + 3$$

 $y = -5x + 1$


Determine whether the linear system has one solution, no solutions, or infinitely many solutions and state how you know.

15)
$$3x + 6y = 12$$

 $y = -\frac{1}{2}x - 2$


16)
$$y = \frac{7}{2}x + 4$$

 $y = -\frac{1}{2}x - 4$

Sketch the solution to each system of inequalities.

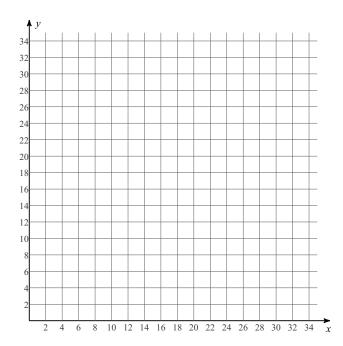
17)
$$3x + 2y \le -2$$

 $x + 2y > 2$

18)
$$y < -2x - 3$$

 $y \le 3x + 2$

19) During the summer, you want to earn at least \$360 per week. You earn \$20 per hour umpiring baseball, and you earn \$15 per hour personal training your neighbor. You can work at most 30 hours per week.


Write and graph (label your axes) a system of linear inequalities that model the situation to state a combination of umpiring and training hours that satisfy the conditions.

Let x= the number of hours umpiring

Let y= the number of hours training

Inequality 1: _____ Inequality 2: ____

Solution: (,)

20) In the system below, what would the value of A have to equal so the system has no solutions? Explain how you know.

$$10x + 8y = 23$$

$$Ax - 8y = 15$$

Answers to Chapter 6 PRACTICE Test

19) $20x + 15y \ge 360$ and $x + y \le 30$

$$(4,-1)$$

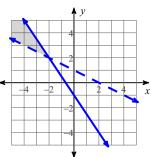
4) (-2, -1)

11) (-3, 2)

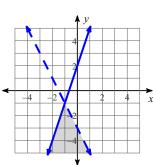
$$(-1, 1)$$

7) (-7, 3)

9)
$$(-1, 4)$$


10) No solution

14) (1, -4)


16)
$$(-2, -3)$$

17)

3) (2, 3)

18)

20)
$$A = -10$$