Name: ______

Chapter 5 Notes

5.1 - Using Fundamental Identities

Use the fact that $f(x) = 1/2$ and $f(x) \neq 0$ to get the other $f(x)$ is using			
Use the fact that tan(x) = 1/3 and cos(x) < 0 to get the other 5 trig values.			
		sinx =	cscx =
		5000	esex
		cosx =	secx =
		000%	Seen
		tanx =	$\cot x =$
		0001000	0007
<u>Ex</u> : Simplify by GCF factoring: $\cos^2 x \cdot \csc x - \csc x$	It's just like $3x^2y$	-5m	
$\underline{\mathbf{L}}$. Simplify by Oct factoring. $\cos x + \csc x = \csc x$	$\int 1CS \int USC IIKE Sx y$	$-3\chi y$	

<u>Ex</u>: Simplify by regular factoring.

$2\tan^2(\theta) + 7\tan(\theta) + 3$	$\sec^2 x + 3\tan x + 1$
<u>Ex</u> : Simplify by using a trig identity	<u>Ex</u> : Simplify by using a conjugate
$\sin x (\csc x - \sin x)$	$\frac{\cos^2\theta}{1-\sin\theta}$

Guidelines for Verifying Trig Identities

1) Work one side at a time (typically the more complicated one) 2) Look for ways to simplify

3) Look to use trig identities 4) Try converting to just sines and cosines 5) Always try *something*

x_{1} , sec ² x-1, x_{2}	Verify the following.
Verify $\frac{\sec^2 x - 1}{\sec^2 x} = \sin^2 x$	
	$2\csc^2\beta = \frac{1}{1 - \cos\beta} + \frac{1}{1 + \cos\beta}$
Verify $\frac{\sec^2 x - 1}{\sec^2 x} = \sin^2 x$ another way.	
sec ² x	
Verify the following by using identities.	Verify the following by converting to sines and cosines.
$(\sec^2 x - 1)(\sin^2 x - 1) = -\sin^2 x$	$cscx - sinx = cosx \cdot cotx$

5.2 Day 2 - Verifying More Trig Identities Using Conjugates and Other Techniques

5.3 Day 1 – Solving Trig Equations

5.3 Day 2 – Solving Quadratic and Other Trig Equations

Solve by factoring on the interval $[0, 2\pi)$	Solve by factoring on the interval $[0, \pi)$
$2\sin^2 x - 3\sin x + 1 = 0$	$3 \sec^2 x - 2 \tan^2 x - 4 = 0$
Solve by converting to a quadratic on the interval $[0, 2\pi)$	Solve for an altered period on the interval $[0, \pi)$
$\sin x + 1 = \cos x$	$2 \sin 2t - \sqrt{3} = 0$

Proving Sine Sum Formula, Double Angle Formulas, and Power Reducing Formulas

<u>Goal</u>: Prove sin(x + y) = sin(x) cos(y) + cos(x) sin(y)

Goal: Prove the double-angle formulas	
sin(2u) =	
$\cos(2u) =$	
$\tan(2u) =$	
Cool Draw the neuron advaire formulae for sin ² a surd as 2 ²	Derive a second size for the 2
<u>Goal</u> : Prove the power-reducing formulas for $\sin^2 u$ and $\cos^2 u$	Prove power-reducing for $\tan^2 u$

5.4 - Applying the Sum and Difference Formulas

Use the sum and difference formulas to find the values of the first two and prove the last two identities

5.5 - Double Angle, Half Angle, and Power Reducing Formulas

Use a half-angle formula to find the exact value of cos (75°)	Use the following figure and the double-angle formulas to find $sin(2\theta)$, $cos(2\theta)$, and $tan(2\theta)$.
	θ 15 8
<u>YOYO</u> : Use a half-angle formula to find the exact value of $\sin\left(\frac{\pi}{8}\right)$.	Rewrite the following so all the trig functions are of the first power. $\cos^4(x)$