\qquad

Chapter 5 Notes

5.1 - Using Fundamental Identities

Use the fact that $\tan (x)=1 / 3$ and $\cos (x)<0$ to get the other 5 trig values.		
	$\sin x=$	$\csc x=$
	$\cos x=$	$\sec x=$
	$\tan x=$	$\cot x=$
Ex: Simplify by GCF factoring: $\cos ^{2} x \cdot \csc x-\csc x$	It's just like $3 x^{2} y-5 x y$	

Ex: Simplify by regular factoring.

$$
2 \tan ^{2}(\theta)+7 \tan (\theta)+3 \quad \sec ^{2} x+3 \tan x+1
$$

Ex: Simplify by using a trig identity

$$
\sin x(\csc x-\sin x)
$$

Ex: Simplify by using a conjugate

$$
\frac{\cos ^{2} \theta}{1-\sin \theta}
$$

5.2 Day 1 - Verifying Trig Identities

Guidelines for Verifying Trig Identities

1) Work one side at a time (typically the more complicated one) 2) Look for ways to simplify
2) Look to use trig identities 4) Try converting to just sines and cosines \quad 5) Always try something

Verify $\frac{\sec ^{2} x-1}{\sec ^{2} x}=\sin ^{2} x$	Verify the following. $2 \csc ^{2} \beta=\frac{1}{1-\cos \beta}+\frac{1}{1+\cos \beta}$

Verify $\frac{\sec ^{2} x-1}{\sec ^{2} x}=\sin ^{2} x$ another way.

Verify the following by using identities.

$$
\left(\sec ^{2} x-1\right)\left(\sin ^{2} x-1\right)=-\sin ^{2} x
$$

Verify the following by converting to sines and cosines. $\csc x-\sin x=\cos x \cdot \cot x$

5.2 Day 2 - Verifying More Trig Identities Using Conjugates and Other Techniques

Verify using conjugates

| $\csc x$ |
| ---: | ---: |
| $\csc x+\cot x=\frac{\sin }{1-\cos x}$ |

Verify by working both sides
$1+\sec \theta$

Verify.
$\frac{1+\sin x}{\cos x}+\frac{\cos x}{1+\sin x}=2 \sec x$

5.3 Day 1 - Solving Trig Equations

Solve for all solutions

$$
2 \sin x-1=0
$$

Solve by collecting like terms on the interval $[0,2 \pi)$ $\cos x-\sqrt{2}=-\cos x$

Why are there infinitely many solutions?

Solve for all solutions by taking a square root

$$
3 \tan ^{2} x-1=0
$$

Solve by GCF factoring on the interval $[0,2 \pi)$
$\cot x \cdot \sin ^{2} x=2 \cot x$

5.3 Day 2 - Solving Quadratic and Other Trig Equations

Solve by factoring on the interval $[0,2 \pi) \quad$ Solve by factoring on the interval $[0, \pi)$

$$
2 \sin ^{2} x-3 \sin x+1=0
$$

$$
3 \sec ^{2} x-2 \tan ^{2} x-4=0
$$

Solve by converting to a quadratic on the interval $[0,2 \pi)$
Solve for an altered period on the interval $[0, \pi)$

$$
\sin x+1=\cos x
$$

$$
2 \sin 2 t-\sqrt{3}=0
$$

Goal: Prove $\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)$

Goal: Prove the double-angle formulas
$\sin (2 u)=$
$\cos (2 u)=$
$\tan (2 u)=$

Goal: Prove the power-reducing formulas for $\sin ^{2} u$ and $\cos ^{2} u$

5.4 - Applying the Sum and Difference Formulas

Use the sum and difference formulas to find the values of the first two and prove the last two identities $\sin \left(75^{\circ}\right)$
$\cos (\pi / 12)$

$\sin \left(x-\frac{\pi}{2}\right)=-\cos x$	$\tan (\theta+3 \pi)=\tan (\theta)$

Given the angles shown, find $\sin (u+v)$.

Find both solutions on the interval $[0,2 \pi)$.

$$
\sin \left(x+\frac{\pi}{2}\right)+\sin \left(x-\frac{3 \pi}{2}\right)=1
$$

5.5 - Double Angle, Half Angle, and Power Reducing Formulas

Use a half-angle formula to find the exact value of $\cos \left(75^{\circ}\right)$

YOYO: Use a half-angle formula to find the exact value of $\sin \left(\frac{\pi}{8}\right)$.

Use the following figure and the double-angle formulas to find $\sin (2 \theta), \cos (2 \theta)$, and $\tan (2 \theta)$.

Rewrite the following so all the trig functions are of the first power.

$$
\cos ^{4}(x)
$$

