Chapter 5 Notes

5.1/5.2 – Solving Inequalities by Adding or Subtracting

Differences and Similarities Between Solving an Equation and Solving an Inequality

Solving an Equation Same Steps: 1) Simplify 2) Same Side 3) Solve x + 5 = 12	Same Steps: 1) Simplify 2) Same Side 3) Solve x + 5 > 12
Only one	Only one

< means _____ and

> means _____

Example: Solve each, state 3 numbers in the solution set and graph the solution set.

2. $-3 < x - 4$	3. $-5x \ge 15$	$4. \frac{x}{-2} \le \frac{7}{8}$
	2. $-3 < x - 4$	2. $-3 < x - 4$ 3. $-5x \ge 15$

<	>	≤	≥
less than	greater than	at most, no more than,	at least, no less than, greater than or equal to
fewer than	more than	less than or equal to	

5.3 – Solve Multi-Step Inequalities

Example: Solve the inequality. Write in set builder notation!

2(8-3x) > 14

Set builder notation read as: _____

<u>Example</u>: 4(3x - 5) + 7 < 8x + 3

Special Cases: Solve and graph each.

$$5(m+5) < 5m+17$$

$$1 - 8x \le -4(2x - 1)$$

$$(++++++++)$$

NUMBER OF SOLUTIONS If an inequality is equivalent to an inequality that is true, such as -3 < 0, then the solutions of the inequality are *all real numbers*. If an inequality is equivalent to an inequality that is false, such as 4 < -1, then the inequality has *no solution*.

Example: Translate from English to Math and then solve.

"Four times the quantity 3x plus two is at least the difference of 2x and five".

5.4 – Solving Compound Inequalities

<u>Lead-In:</u> At a Grizzly football game, the temperature at kickoff was 41 degrees. At halftime, it had dropped to 8 degrees. Can you write a mathematical expression for the temperature (t) at the game during some point between kickoff and halftime?

Examp	le:	Grai	ohing	Com	pound	Inec	ualities
Елиптр	<u>.</u> .	Grup	Sinne.	com	pound	nice	Juantics

1. x > 4 and x < 10	2. x < 4 or x > 10
$\cdot + + + + + + + + + + + + + + + + + + +$	$\leftarrow + + + + + + + + + + + \rightarrow$

Intersection	Union
1. $-2 < x$ and $x \le 1$ can also be written:	2. $x < -1$ or $x \ge 0$
$\langle + + + + + + + + + + + + \rangle$	$\langle \cdot \rangle$

Example: Translate from Verbal (English) to Algebraic (Math), then graph.

A number p is greater than -2 and less than 3.

Example: Solve a compound inequality with *and*.

Method 1	Method 2	
2 < x + 5 < 9	2 < x + 5 < 9	
<++++++++++>	$\langle + + + + + + + + + + + + + \rangle$	

Example: Solve a compound inequality with *or* as well as unique solutions.

1. $2x + 3 < 9$ or $3x - 6 > 12$	2. $x - 23 > -10$ and $x - 16 < -20$
$\underbrace{++++++++++}$	

5.5 – Solve Absolute Value Inequalities

Translate to English and graph each.

Example: Solve |x - 4| < 12 and graph.

Example: Solve |2x + 5| > 9 and graph.

← →

►

Example: Solve $ 4x + 3 < -18$ and graph.	Example: Solve $ 4x + 3 > -18$ and graph.
← →	← →

<u>Challenge</u>: Work with a neighbor to write a mathematical statement for the graphs shown. Your statement must include the absolute value symbol.

Which ordered pair is *not* a solution of $x - 3y \le 6$?

(**A**) (0, 0) (**B**) (6, -1) (**C**) (10, 3) (**D**) (-1, 2)

$x-3y \le 6$	$x-3y \le 6$	$x - 3y \le 6$	$x - 3y \le 6$

Graphing Inequalities in One Dimension	Graphing Inequalities in Two Dimensions
Points on the number line that make the statement	Points in the coordinate plane that make the
true	statement true
X > 3	y > 4x - 3
$\langle + + + + + + + + + + + + \rangle$	y > 4x - 3

When graphing linear inequalities, we use a dashed line if ______

When graphing linear inequalities, we use a solid line if ______

How do you know which side to shade? _____

Steps for Graphing Linear Inequalities

- 1.
- 2.
- 3.
- 4.

Examples: Graph the following linear inequalities.

