\qquad

Chapter 5 Notes

5.1/5.2 - Solving Inequalities by Adding or Subtracting

Differences and Similarities Between Solving an Equation and Solving an Inequality
\(\left.$$
\begin{array}{|c|c|}\hline \begin{array}{c}\text { Solving an Equation } \\
\text { Same Steps: 1) Simplify 2) Same Side 3) Solve } \\
x+5=12\end{array} & \begin{array}{c}\text { Solving an Inequality } \\
\text { Only one }\end{array}
$$

Same Steps: 1) Simplify 2) Same Side 3) Solve

x+5>12\end{array}\right]\)| Only one |
| :---: |
| <means _and |

Example: Solve each, state 3 numbers in the solution set and graph the solution set.

1. $x+3>-15$ 2. $-3<x-4$ 3. $-5 x \geq 15$ 4. $\frac{x}{-2} \leq \frac{7}{8}$ $<$
less than fewer than $>$ \leq \geq
greater than more than
at most, no more than, less than or equal to
at least, no less than, greater than or equal to

5.3 - Solve Multi-Step Inequalities

Example: Solve the inequality. Write in set builder notation!
$2(8-3 x)>14$

Set builder notation read as: \qquad
Example: $4(3 x-5)+7<8 x+3$

Special Cases: Solve and graph each.

NUMBER OF SOLUTIONS If an inequality is equivalent to an inequality that is true, such as $-3<0$, then the solutions of the inequality are all real numbers. If an inequality is equivalent to an inequality that is false, such as $4<-1$, then the inequality has no solution.

Graph of an inequality whose solutions are all real numbers Example: $3 p-5>3 p-7$	Example: $3 p-5<3 p-7$

Example: Translate from English to Math and then solve.
"Four times the quantity $3 x$ plus two is at least the difference of $2 x$ and five".

5.4 - Solving Compound Inequalities

Lead-In: At a Grizzly football game, the temperature at kickoff was 41 degrees. At halftime, it had dropped to 8 degrees. Can you write a mathematical expression for the temperature (t) at the game during some point between kickoff and halftime?

Example: Graphing Compound Inequalities

1. $x>4$ and $\mathrm{x}<10$	2. $\mathrm{x}<4$ or $\mathrm{x}>10$
Intersection	Union
1. $-2<x$ and $x \leq 1$ can also be written:	2. $\mathrm{x}<-1$ or $\mathrm{x} \geq 0$

Example: Translate from Verbal (English) to Algebraic (Math), then graph.
A number p is greater than -2 and less than 3 .

Example: Solve a compound inequality with and.

Example: Solve a compound inequality with or as well as unique solutions.

5.5 - Solve Absolute Value Inequalities

Translate to English and graph each.

$\|x\|>4$	$\|x\| \leq 1$
\longleftarrow	\longleftarrow

Example: Solve $|x-4|<12$ and graph.

Example: Solve $|2 x+5|>9$ and graph.

Example: Solve $\|4 x+3\|<-18$ and graph.	Example: Solve $\|4 x+3\|>-18$ and graph.

Challenge: Work with a neighbor to write a mathematical statement for the graphs shown. Your statement must include the absolute value symbol.

5.6-Graph Inequalities in Two Variables

Which ordered pair is not a solution of $x-3 y \leq 6$?
(A) $(0,0)$
(B) $(6,-1)$
(C) $(10,3)$
(D) $(-1,2)$

| $x-3 y \leq 6$ |
| :--- | :--- | :--- | :--- |
| | | | |

| Graphing Inequalities in One Dimension |
| :---: | :---: |
| Points on the number line that make the statement |
| true |
| $x>3$ |\quad| Graphing Inequalities in Two Dimensions |
| :---: |
| Points in the coordinate plane that make the |
| statement true |

When graphing linear inequalities, we use a dashed line if \qquad
When graphing linear inequalities, we use a solid line if \qquad
How do you know which side to shade? \qquad
Steps for Graphing Linear Inequalities
1.
2.
3.
4.

Examples: Graph the following linear inequalities.

