\qquad

4.5 Day 1 - Graphs of Sine and Cosine

x	0	$\pi / 2$	π	$3 \pi / 2$	2π
$\sin (x)$					
$\cos (x)$					

$\cos (x)$

Amplitude: half the distance between the max and min values for a sine or cosine graph. It's always positive! For the parent function it is \qquad _.

$y=\mathrm{a} \cdot \sin x$
a acts as
$\|a\|>1$ the basic sine curve is
$\|a\|<1$ the basic sine curve is
$a<0$ the parent functions is

Library of Parent Functions: Sine and Cosine Functions The basic characteristics of the parent sine function and parent cosine function are listed below and summarized on the inside cover of this text.

Domain: $(-\infty, \infty)$
Range: $[-1,1]$
Range: $[-1$,
Period: 2π
Period: 2π
x-intercepts: $(n \pi, 0)$
y-intercept: $(0,0)$
Odd function
Origin symmetry

Domain: $(-\infty, \infty)$
Range: $[-1,1]$
Range: $[-1,1]$
Period: 2π
Period: 2π
x-intercepts: $(\pi / 2+n \pi, 0)$
x-intercepts: $(\pi / 2+$
y-intercept: (0,1)
Even function
y-axis symmetry
$f(x)=-0.5 \cos (x)$
Amplitude $=$

$$
g(x)=3 \cos (x)
$$

Amplitude $=$

$y=\sin (b x)$
b acts as
Period is the time it takes to complete one fully cycle and go from peak to peak.
Period $=$
If $b<0$ we apply the following identities $\sin (-x)=\quad$ and $\cos (-x)=$

- $f(x)=\sin (4 x)$

Period $=$

- $g(x)=\sin \left(\frac{x}{2}\right)$

Period $=$

Note: once you have the period for each, you can find where the key points will occur by dividing the period by 4 since there are 4 key points.

Sketch the graph for $g(x)=2 \sin (3 x)$

Amplitude $=$
Period =

Check on your calculator

State what the equation is for the graph shown.
sine or cosine?

Amplitude $=$
Period $=$

$f(x)=\sin (x)+d$	$f(x)=\sin (x+c)$
d is a	c is a
$\sin (x)+3$ would move the graph	$\sin (x+3)$ would move the graph
$\sin (x)-2$ would move the graph	$\sin (x-2)$ would move the graph

*We'll come back to the question below @ the end of the lesson

Summary Transformation of Trigonometric Graphs
you may have to factor B out to get this form

$-2 \left\lvert\, \begin{aligned} & 2 \pi \\ & \\ & \\ & \\ & \\ & \\ & h(x)=\sin (0.5 x)-1 \\ & k(x)=2 \cos (0.5 x)-1\end{aligned}\right.$
$k(x)-2$
$|A|$ is the amplitude
The period is $\frac{2 \pi}{B}$
Phase (horizontal) shift is C
Vertical shift is D
The same applies for the Cosine Function.

Identify the information and sketch the graph for each.

2) Perform the transformations one at a time, according to the order of operations.
$f(x)=\sin (2 x+\pi)=$
Horizontal Shift =
Amplitude = Period $=\quad$ Vertical Shift $=$

1) Sketch the parent function

2) Perform the transformations.

$$
f(x)=0.5 \cos (x)+2
$$

Horizontal Shift $=\quad$ Amplitude $=$ Period $=\quad$ Vertical Shift $=$

1) Sketch the parent function

2) Perform the transformations.

Identify the information and sketch the graph for each.

$$
f(x)=2 \sin \left(x-\frac{\pi}{2}\right)-1
$$

Amplitude $=$

Horizontal Shift $=$
Period $=\quad$ Vertical Shift $=$
1) Use the parent function table for $\sin (x)$ to find the new x
la rt coordinate by applying the horizontal shift.

x	0	$\pi / 2$	π	$3 \pi / 2$	2π
$\sin x$	0	1	0	-1	0

x	$\pi / 2$				
$f(x)$					

2) Since you have the period, you can find where the next 4 key points will occur by dividing the period by 4 and adding it to your start x -coordinate.

$$
\begin{aligned}
& \frac{\text { Period }}{4}= \\
& f(x)=-\cos (2 \pi x+4 \pi)+1=
\end{aligned}
$$

$$
\begin{array}{lr}
\text { Horizontal Shift }= & \text { Amplitude }= \\
\text { Period }= & \text { Vertical Shift }=
\end{array}
$$

1) Use the parent function table for $\cos (x)$ to find the new x start coordinate by applying the horizontal shift.

x	0	$\frac{\pi}{2}$	${ }^{\pi}$	$\frac{3 \pi}{2}$	2π
$\cos x$	1	0	-1	0	1

x					
$f(x)$					

2) Since you have the period, you can find where the next 4 key points will occur by dividing the period by 4 and adding it to your start x -coordinate.
$\frac{\text { Period }}{4}=$
Find an equation for the graph shown (using sine).

$f(x)=\operatorname{asin}(b(x+c))+d$

3) Apply the y-coordinate transformations, according to the order of operations, to get the new outputs.
Each y-coordinate from the parent function is multiplied by 2 and then subtract 1

4) Apply the y-coordinate transformations, according to the order of operations, to get the new outputs.
Each y-coordinate from the parent function is multiplied by 1 and then added 1
5) Pick 5 points that follow in the same order of the parent sine function (on the midline, max, on the midline, min , on the midline) determine the period and then " b ".
6) Use the first of the five points to determine the horizontal shift ("c"). Use the new midline to determine the vertical shift ("d").
7) Use the max and min values to determine the amplitude since the amplitude is half the distance between.

Find an equation for the graph shown (using cosine).

$f(x)=\operatorname{acos}(b(x+c))+d$

1) Pick 5 points that follow in the same order of the parent sine function (max, on the midline, min, on the midline, max) determine the period and then " b ".
2) Use the first of the five points to determine the horizontal shift ("c"). Use the new midline to determine the vertical shift ("d").
3) Use the max and min values to determine the amplitude since the amplitude is half the distance between.

Example: Application

The table shows the percent (in decimal form) of the moon's face that is illuminated on day x of the year 2016, where $x=1$ represents Jan. 1.
a) Create a scatter plot of the data.

c) Use our equation to estimate the percent illumination of the moon for tonight.

Days between Jan. 1, 2016 and today =
$p(\quad)=$
What the moon phase (percent illuminated) actually is today =

Graphing $\tan (x)$: Use the fact that $\tan (x)=\sin (x) / \cos (x)$ to reason through what the graph for $\mathrm{f}(\mathrm{x})=\tan (\mathrm{x})$ will look like. $f(x)=\tan x=\frac{\sin x}{\cos x}$		
Describe in words how the following functions compare to the parent function $\mathrm{f}(\mathrm{x})=\tan (\mathrm{x})$ and then sketch a graph.		
$g(x)=\tan \left(\frac{x}{2}\right)$		$g(x)=-\tan (2 x)$
Graphing $\boldsymbol{\operatorname { c o t }}(x)$: Use the fact that $\cot (x)=\cos (x) / \sin (x)$ to reason through what the graph for $\mathrm{f}(\mathrm{x})=\cot (\mathrm{x})$ will look like. $f(x)=\cot x=\frac{\cos x}{\sin x}$		
Describe in words how the following function compares to the parent function $\mathrm{f}(\mathrm{x})=\cot (\mathrm{x})$ and then sketch a graph.$g(x)=\cot \left(\frac{x}{3}\right)$		Determine the values for c and d in the equation for the graph shown. $f(x)=\cot (x+c)+d$ 1) to determine "c" note the shift of the vertical asymptotes. 2) to determine d, plug the y-intercept into the equation and solve for d.

Graph of the Cosecant Function

Recall: $\csc x=\frac{1}{\sin x}$

The graph for $\csc (x)$ is shown in black (the graph of $\sin (x)$ is shown in gray). Explain why the graph of this makes sense.

- $\quad \csc (x)$ will have vertical asymptotes where \qquad $=0$
- Where $\sin (x)$ is a \qquad is where $\csc (x)$ will have its minimum and vice versa, since they are
\qquad of one another
- Where $\sin (x)$ is \qquad , $\csc (x)$ will be positive as well

$f(x)=\sin x$

Summary of $\sec x$

Domain: all real numbers $x, x \neq \frac{\pi}{2}+n \pi$
Range: $(-\infty,-1] \cup[1, \infty)$
Period: 2π
y-intercept: $(0,1)$
Vertical asymptotes: $x=\frac{\pi}{2}+n \pi$
Even function y-axis symmetry
Sketch the graph for $f(x)=2 \csc \left(x-\frac{\pi}{2}\right)$

1) First, sketch the graph for $y=2 \sin \left(x-\frac{\pi}{2}\right)$
2) Use the graph for sine to sketch in the vertical asymptotes, mins, and maxes of the cosecant function and then finish the graph.

Sketch the graph for $f(x)=-\sec (2 x)$

1) First, sketch the graph for $y=-\cos (2 x)$
2) Use the graph for cosine to sketch in the vertical asymptotes, mins, and maxes of the secant function and then finish the graph.

Application: Pendulums

Which graph, sine or cosine, would model the pendulum's distance from its center location (letting distance to the right be positive and distance to the left be negative) over time?

This is called a \qquad graph and can be modeled by the following equation.

4.8 - Solve Right Triangles and Trig Applications

$\sin ($ Angle $)=o p p / h y p \quad \sin ^{-1}(o p p / h y p)=$ Angle You use the inverse trig functions when you have the $\cos ($ Angle $)=a d j / h y p \quad \cos ^{-1}($ adj $/$ hyp $)=$ Angle ratio, but want to know the angle
$\tan ($ Angle $)=o p p / h y p$
$\tan ^{-1}($ opp $/$ adj $)=$ Angle $\quad \sin \left(45^{\circ}\right)=1 / \sqrt{2}$
so $\sin ^{-1}(1 / \sqrt{2})=$ \qquad

A sign on the roadway of a mountain indicates a 9.5° grade over the next 3 miles. What is the actual change in elevation?

Set up two trig equations and solve for the height of the smokestack, s.

Consider the motion of the following mass on a spring that starts compressed and has a period of 4 seconds. Write the equation for its displacement from center using the simple harmonic motion equation.

[^0]$$
d=a \sin \omega t \quad \text { or } \quad d=a \cos \omega t
$$
where a and ω are real numbers such that $\omega>0$. The motion has amplitude $|a|$, period $2 \pi / \omega$, and frequency $\omega /(2 \pi)$.

4.7 Day 1 - Evaluating Inverse Trig Functions and Their Graphs

Inverses: functions $f(t)$ and $f^{-1}(t)$ are inverses if the input of f is the output of f^{-1} and the output of f is the input of f^{-1}.
So, if $\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$ then we know
Note: you will see the inverse sine function, $\sin ^{-1}(x)$, also called $\arcsin (x) . \quad \begin{array}{ll}y=\arcsin x & \text { or } \quad y=\sin ^{-1}(x)\end{array}$ If you consider the graph of $\sin (x)$ along its entire domain, will it have an inverse? Why or why not? Can we fix this?

Ex: Use the table for $f(x)=\sin (x)$ along the restricted domain to make the table and graph for $g(x)=\arcsin (x)$.

Ex: Use the table for $\mathrm{f}(\mathrm{x})=\tan (\mathrm{x})$ along the restricted domain to make the table and graph for $\mathrm{g}(\mathrm{x})=\arctan (\mathrm{x})$.

Ex: Use the table for $f(x)=\cos (x)$ along the restricted domain to make the table and graph for $g(x)=\arccos (x)$.

Examples: Determine the following. Sketch a picture if necessary and use the ranges of the inverse trig functions to determine the correct answer. Then check with a calculator.

$\cos ^{-1}\left(-\frac{\sqrt{2}}{2}\right)$	$\arctan (1)$
$\arcsin \left(-\frac{1}{2}\right)$	$\cos ^{-1}(\sqrt{3})$

Compositions of Functions	
Recall from Section 1.6 that for all x in the domains of f and f^{-1}, inverse functions have the properties $f\left(f^{-1}(x)\right)=x \quad \text { and } \quad f^{-1}(f(x))=x .$	Note Kecp in mind that these properies do not apply for athitrayy values of x and y. For instance, $\arcsin \left(\sin \frac{3 \pi}{2}\right)=\arcsin (-1)=-\frac{\pi}{2} \neq \frac{3 \pi}{2} .$ In other words, the property $\arcsin (\sin y)=y$ is not valid for values of y outside the interval $[-\pi / 2, \pi / 2]$. If this happens, you need to convert the given angle to an equivalent one (coterminal angle) in the range first.
$\begin{aligned} & \text { Inverse Properties } \\ & \text { If }-1 \leq x \leq 1 \text { and }-\pi / 2 \leq y \leq \pi / 2 \text {, then } \\ & \sin (\arcsin x)=x \quad \text { and } \quad \arcsin (\sin y)=y . \\ & \text { If }-1 \leq x \leq 1 \text { and } 0 \leq y \leq \pi \text {. then } \\ & \quad \cos (\arccos x)=x \quad \text { and } \quad \arccos (\cos y)=y . \\ & \text { If } x \text { is a real number and }-\pi / 2<y<\pi / 2 \text {, then } \\ & \left.\begin{array}{c} \tan (\arctan x)=x \end{array} \text { and } \quad \text { arctan(tan } y\right)=y . \end{aligned}$	
$\sin \left(\sin ^{-1}(1 / 2)\right)=$	$\arctan \left(\tan \left(\frac{\pi}{4}\right)\right)=$
$\sin ^{-1}\left(\sin \left(\frac{5 \pi}{3}\right)\right)=$	$\cos (\operatorname{arcos}(\pi))=$
$\sin \left(\tan ^{-1}(4 / 3)\right)=$	$\sec \left(\sin ^{-1}(-5 / 13)\right)=$
If you stated what this is asking in English, it would say, "What is the sine ratio if the tangent ratio is $4 / 3$?"	If you stated what this is asking in English, it would say, "What is the secant ratio if the sine ratio is $-5 / 13$?"
Note, the range for arctan is $[-\pi / 2, \pi / 2]$, so we know this is in the first quadrant.	Note, the range for arcsin is $[-\pi / 2, \pi / 2]$, so we know this is in the first quadrant.
$\tan \left(\cos ^{-1}(x / 5)\right)=$ If you stated what this is asking in English, it would say, "What is the tangent ratio if the cosine ratio is x/5?"	a) Write θ as a function of x.
	b) Find θ when $x=10$ miles and $x=3$ miles.

[^0]: Definition of Simple Harmonic Motion
 A point that moves on a coordinate line is in simple harmonic motion when its distance d from the origin at time t is given by either

