Name: _ **Chapter 4 Notes**

4.1 Day 1 – Radians and Converting Between Them

Radian: one radian is the measure of a central angle, ?, that creates an arc, s, equal in length to ____

_____ of the circle, r. Mathematically, the formula to determine the radian measurement is $\theta = s/r$.

Example: Fill in the measurements below in radians.

Example: Graph each of the angles below.

$\theta = \frac{-3\pi}{4}$	$\theta = \frac{5\pi}{3}$	$\theta = \frac{7\pi}{6}$	$\theta = \frac{5\pi}{4}$
· · · · · · · · · · · · · · · · · · ·			

Example: For each a) graph, b) state what quadrant they are in, and c) find two coterminal angles.

Continue to next side

Converting Between Radians and Degrees

$\pi radians = \circ$	2π radians =	0	1 radian ≈	0

Example: Convert between radians and degrees.

Finding the Complement and Supplement (note: complementary angles sum to 90° and supplementary to 180°)

<u>Ex</u>: For each angle given, find the complement and supplement of each angle, if possible. Note, by definition, complements and supplements must be positive.

4.1 Day 2 – Linear and Angular Speed

Recall, we determine the radian measure through the formula $\theta = s/r$, so we can determine the arc length, *s*, by solving for *s* and obtaining the formula s =. Note, θ is measured in radians, NOT degrees!

Ex: As Earth rotates, how far do you travel through space in 8 hrs just based on this? Earth's radius ~ 4000 miles.

<u>Ex</u>: Find the distance between the cities (assume the Earth is a sphere of radius 4000 miles and the cities are on the same longitude line). Helena: 46° 35' 45'' N and Salt Lake City: 40° 45' 31'' N

394 ft. Fencing

<u>Ex</u>: The boundaries for the fence (which extend partway into foul territory) should be set at what angle (in degrees)?

<u>Ex</u>: The ISS makes an orbit every 90 minutes. If it orbits at a height of 254 miles and Earth's radius is 4000 miles, find its linear speed in miles/hour.

Cor	nsider a particle moving at a constant speed along a circular arc of radius r. If
5 15	Linear speed = $\frac{\text{arc length}}{\text{time}} = \frac{s}{t}$
Mo the	reover, if θ is the angle (in radian measure) corresponding to the arc length <i>s</i> , n the angular speed of the particle is
	Angular speed = $\frac{\text{central angle}}{\text{time}} = \frac{\theta}{t}$.
Lin hov	ear speed measures how fast the particle moves, and angular speed measures v fast the angle changes.

Ex: If the Ferris Wheel shown in the lesson has a radius of 30 feet, find

a) Angular speed of a passenger (rads/min)	b) Linear speed of a passenger (feet/min)

4.3 Day 1 – Right Triangle Trig

Examples

Evaluate sin(43° 40' 12") using a calculator.	Determine the distance across for the hot tub shown.	4 ft

Proofs of Three Trig Identities

$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$	$\sin^2(\theta) + \cos^2(\theta) = 1$
	$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$

Let θ be an acute angle such that $sin(\theta) = 0.6$. Find the values of $cos(\theta)$ and $tan(\theta)$ using trig identities.	Prove using trig identities. $\cot(\theta) \sin(\theta) = \cos(\theta)$	Prove using trig identities. $(1 + \cos \theta)(1 - \cos \theta) = \sin^2 \theta$

4.2 Day 1 – Trig Functions on the Unit Circle

Lead-In: Consider a point on the circle shown that makes an angle θ with the vertex and x-axis. What are its x and y coordinates?

<u>Ex</u>: Evaluate each of the six trigonometric functions at the given angle.

4.2 Day 2 – Domain and Period of Sine and Cosine

On the unit circle, what is the domain and range for the sine and cosine functions?

 $\sin(t)$ $\cos(t)$

Situation 1	Situation 2	
$\sin\left(\pi/6\right) =$	sin(30°) =	cos(30°) =
$\sin\left(\frac{\pi}{\epsilon}+2\pi\right) =$	$\sin(-30^\circ) =$	$\cos(-30^{\circ}) =$
0		
Adding 2π gets you back to the same spot, so	Recall from a prior section th	nat a function f is even when f(-t) =
$\sin(t+2\pi n) =$	f(t) and it is odd when $f(-t) =$	-f(-t).
$\cos(t+2\pi n) =$		
Periodic : A function <i>f</i> is periodic if there	Even and Odd Trig Eunctions	
exists a real number c such that	Cosine and secant are even functions	
f(t+c) =	$\cos(-t) = \sec(-t) =$	
We call <i>c</i> the period.	Sine, cosecant, tangent, and cotangent are odd functions.	
	$\sin(-t) =$	$\csc(-t) =$
What is the period for sine and cosine?		
	$\tan(-t) =$	$\cot(-t) =$

Example: Use the periodicity of sine and cosine to determine the following without a calculator.

a) $\cos\left(\frac{13\pi}{6}\right)$	b) $sin\left(\frac{-7\pi}{2}\right)$

Example: Use a calculator and the reciprocal identities to determine the following, if possible. Round to four decimal places if necessary.

$CSC\left(\frac{5\pi}{7}\right)$	$\sec\left(-\frac{\pi}{2}\right)$	$cot(\pi)$

4.4 Trig Functions for Any Angle

