\qquad

Chapter 4 Notes

4.1 Day 1 - Radians and Converting Between Them

Radian: one radian is the measure of a central angle, ?, that creates an arc, s, equal in length to \qquad
\qquad of the circle, r. Mathematically, the formula to determine the radian measurement is $\theta=s / r$.

Example: Fill in the measurements below in radians.

Example: Graph each of the angles below.

$\theta=\frac{-3 \pi}{4}$	$\theta=\frac{5 \pi}{3}$	$\theta=\frac{7 \pi}{6}$	$\theta=\frac{5 \pi}{4}$

Example: For each a) graph, b) state what quadrant they are in, and c) find two coterminal angles.

π radians $=$ \qquad - $\quad 2 \pi$ radians $=$ \qquad - 1 radian \approx \qquad ${ }^{\circ}$

Example: Convert between radians and degrees.
a) $\frac{2 \pi}{3}$

b) $-\frac{11 \pi}{6}$

c) 135°

d) -270°

Finding the Complement and Supplement (note: complementary angles sum to 90° and supplementary to 180°)
Ex: For each angle given, find the complement and supplement of each angle, if possible. Note, by definition, complements and supplements must be positive.
$\theta=\frac{\pi}{4} \quad \theta=\frac{4 \pi}{5}$

4.1 Day 2 - Linear and Angular Speed

Recall, we determine the radian measure through the formula $\theta=s / r$, so we can determine the arc length, s, by solving for s and obtaining the formula $s=$. Note, θ is measured in radians, NOT degrees!

Ex: As Earth rotates, how far do you travel through space in 8 hrs just based on this? Earth's radius ~ 4000 miles.

Ex: Find the distance between the cities (assume the Earth is a sphere of radius 4000 miles and the cities are on the same longitude line). Helena: $46^{\circ} 35^{\prime} 45^{\prime \prime} \mathrm{N}$ and Salt Lake City: $40^{\circ} 45^{\prime} 31^{\prime \prime} \mathrm{N}$

Ex: The boundaries for the fence (which extend partway into foul territory) should be set at what angle (in degrees)?

Ex: The ISS makes an orbit every 90 minutes. If it orbits at a height of 254 miles and Earth's radius is 4000 miles, find its linear speed in miles/hour.

Linear and Angular Speed
Consider a particle moving at a constant speed along a circular arc of radius r. If s is the length of the arc traveled in time t, then the linear speed of the particle is

$$
\text { Linear speed }=\frac{\text { arc length }}{\text { time }}=\frac{s}{t} .
$$

Moreover, if θ is the angle (in radian measure) corresponding to the arc length s, then the angular speed of the particle is

$$
\text { Angular speed }=\frac{\text { central angle }}{\text { time }}=\frac{\theta}{t} .
$$

Linear speed measures how fast the particle moves, and angular speed measures how fast the angle changes.

Ex: If the Ferris Wheel shown in the lesson has a radius of 30 feet, find
a) Angular speed of a passenger (rads/min)
b) Linear speed of a passenger (feet/min)

4.3 Day 1 - Right Triangle Trig

Lead In:	1) For the right isosceles triangle shown, what is the diagonal length? a) 2 b) $\sqrt{2}$ c) 1 d) $\sqrt{3}$	2) For the equilateral triangle shown, what is its height? a) 2 b) $2 \sqrt{2}$ c) 3 d) $\sqrt{3}$	Special Right Triangles

Six Trig Ratios

Let θ be an acute angle of a right triangle. Then:
$\begin{array}{ll}\sin (\theta)= & \csc (\theta)= \\ \cos (\theta)= & \sec (\theta)= \\ \tan (\theta)= & \cot (\theta)=\end{array}$

Examples

Evaluate $\sin \left(43^{\circ} 40^{\prime} 12^{\prime \prime}\right)$ using a calculator.	Determine the distance across for the hot tub shown.

For each of the triangles, find the following. Then state what you notice and wonder. $\begin{array}{r} \sin ^{2}(\theta)= \\ +\quad \cos ^{2}(\theta)= \\ \hline \end{array}$ $\sin ^{2}(\theta)=$ $+\cos ^{2}(\theta)=$	Fundamental Trigonometric Identities Reciprocal Identities $\begin{array}{rlr} * \sin \theta=\frac{1}{\csc \theta} & \cos \theta=\frac{1}{\sec \theta} & \tan \theta=\frac{1}{\cot \theta} \\ \csc \theta=\frac{1}{\sin \theta} & \sec \theta=\frac{1}{\cos \theta} & \cot \theta=\frac{1}{\tan \theta} \end{array}$ Quotient Identities $* \tan \theta=\frac{\sin \theta}{\cos \theta}$ $\cot \theta=\frac{\cos \theta}{\sin \theta}$ Pythagorean Identities $\begin{array}{r} * \sin ^{2} \theta+\cos ^{2} \theta=1 \\ 1+\tan ^{2} \theta=\sec ^{2} \theta \\ 1+\cot ^{2} \theta=\csc ^{2} \theta \end{array}$ We will prove the ones noted in red, but the rest are similar.

Proofs of Three Trig Identities

$\sin (\theta)=\frac{1}{\csc (\theta)}$	$\tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)}$	$\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$

Let θ be an acute angle such that $\sin (\theta)=0.6 . ~ F i n d ~ t h e ~ v a l u e s ~ o f ~$ and $\tan (\theta)$ using trig identities.	Prove using trig identities. $\cot (\theta) \sin (\theta)=\cos (\theta)$	Prove using trig identities. $(1+\cos \theta)(1-\cos \theta)=\sin ^{2} \theta$

4.2 Day 1 - Trig Functions on the Unit Circle

Lead-In: Consider a point on the circle shown that makes an angle θ with the vertex and x-axis. What are its x and y coordinates?

Definitions of Trigonometric Functions

Let θ be the angle made by a point, with coordinates (x, y), on the unit circle, the vertex of the unit circle, and the x-axis. Then, the following are true.

$$
\begin{array}{lll}
\sin (\theta)= & \cos (\theta)= & \tan (\theta)= \\
\csc (\theta)= & \sec (\theta)= & \cot (\theta)=
\end{array}
$$

30-60-90

Unit Circle Trig Values for $\pi / 4\left(45^{\circ}\right)$ Intervals

Ex: Evaluate each of the six trigonometric functions at the given angle.

| $\theta=\frac{5 \pi}{4}$ | | | |
| :--- | :--- | :--- | :--- | :--- |
| $\cos (\theta)=$ | $\tan (\theta)=$ | | |
| $\cot (\theta)=$ | $\cos (\theta)=$ | $\cos (\theta)=$ | $\tan (\theta)=$ |
| $\csc (\theta)=$ | $\sec (\theta)=$ | $\cot (\theta)=$ | |

4.2 Day 2 - Domain and Period of Sine and Cosine

On the unit circle, what is the domain and range for the sine and cosine functions? $\sin (t)$
$\cos (t)$

Situation 1	Situation 2
$\begin{aligned} & \sin (\pi / 6)= \\ & \sin \left(\frac{\pi}{6}+2 \pi\right)= \end{aligned}$	$\sin \left(30^{\circ}\right)=$ $\cos \left(30^{\circ}\right)=$ $\sin \left(-30^{\circ}\right)=$ $\cos \left(-30^{\circ}\right)=$
Adding 2π gets you back to the same spot, so $\sin (t+2 \pi n)=$ $\cos (t+2 \pi n)=$	Recall from a prior section that a function f is even when $f(-t)=$ $f(t)$ and it is odd when $f(-t)=-f(-t)$.
Periodic: A function f is periodic if there exists a real number c such that $f(t+c)=$ \qquad We call c the period. What is the period for sine and cosine?	Even and Odd Trig Functions Cosine and secant are even functions. $\cos (-t)=$ $\sec (-t)=$ Sine, cosecant, tangent, and cotangent are odd functions. $\begin{array}{ll} \sin (-t)= & \csc (-t)= \\ \tan (-t)= & \cot (-t)= \end{array}$

Example: Use the periodicity of sine and cosine to determine the following without a calculator.

a) $\cos \left(\frac{13 \pi}{6}\right)$	b) $\sin \left(\frac{-7 \pi}{2}\right)$

Example: Use a calculator and the reciprocal identities to determine the following, if possible. Round to four decimal places if necessary.

$\csc \left(\frac{5 \pi}{7}\right)$	$\sec \left(-\frac{\pi}{2}\right)$	$\cot (\pi)$

Definitions of Trigonometric Functions of Any Angle Let θ be an angle in standard position with (x, y) a point on the terminal side of θ and $r=\sqrt{x^{2}+y^{2}} \neq 0$.	Find sine, cosine, and tangent of θ.
 $\sin \theta:$ $\cos \theta:$ $\tan \theta:$ $\sin \theta:$ Quadrant II $\theta:$ $\tan \theta:$ Quadrant III $\sin \theta:$ $\cos \theta:$ $\tan \theta:$ Quadrant IV $\sin \theta:$ $\cos \theta:$ $\tan \theta:$	State the quadrant θ lies for each. a) $\sin (\theta)<0$ and $\tan (\theta)>0$ b) $\sec (\theta)>0$ and $\cot (\theta)<0$
For each, find the indicated trig value in the specified	quadrant.
Definition of Reference Angle Let θ be an angle in standard position. Its reference angle is the acute angle θ^{\prime} formed by the terminal side of θ and the horizontal axis. The reference angles for θ in Quadrants II, III, and IV are shown below.	Evlaute each. a) $\sin \left(\frac{4 \pi}{3}\right)$ b) $\tan \left(210^{\circ}\right)$ c) $\sec \left(\frac{11 \pi}{4}\right)$
Find the two solutions for each equation and give your answ a) $\cos (\theta)=-1 / 2$	ver both in degrees $\left(0^{\circ} \leq \theta \leq 360^{\circ}\right)$ and radians $(0 \leq \theta \leq 2 \pi)$ b) $\tan (\theta)=\frac{1}{\sqrt{3}}$

