Honors Precalculus Chapter 4 PRACTICE TEST

	1.	For each, sketch the angle in standard position and list two angles that are coterminal (one	2. For each angle, convert between radians and degrees.
	a)	$\frac{2\pi}{3}$	a) $\frac{\pi}{4} = ___^{\circ}$
			b) $-\frac{11\pi}{6} = \{\circ}$
	b)	$\frac{-7\pi}{6}$	c) 210° =
			d) 90° =
	3.	For each angle, find the complement and the supplement, if possible, and give your answer in degrees	4. Use the triangle below to answer. Write answer as a fraction.
			$\sin(A) = $ ⁸⁵
	a)	$\theta = \frac{\pi}{5}$	$\cos(B) = A \xrightarrow{77} C$
			$\tan(A) =$
	b)	$\theta = \frac{3\pi}{5}$	sec(B) =
a)	5. cos	Use trig identities to prove the following. $s(\theta) \sec(\theta) = 1$	 List the coordinates of the point (x,y) on the unit circle corresponding to each reference angle.
			a) $\theta = \frac{4\pi}{3}$
b)	cot	$\frac{(\theta) + \tan(\theta)}{\cot(\theta)} = \sec^2(\theta)$	
			b) $\theta = \frac{-5\pi}{6}$
	7.	Evaluate $\cos(6\pi)$, without a calculator, by	8 Evaluate $\sin\left(\frac{11\pi}{2}\right)$ without a calculator by
		using its period as an aid.	using its period as an aid.

 9. a) A car wheel that has a radius of 14 in. rotates 3450°. Convert that to radians. b) Use your answer to (a) and the car's radius to determine how far forward the car moved. 	10. Find the value of θ in radians and degrees. Radians = Degrees =			
 11. Use a calculator to evaluate and round to 4 decimal places. sin (52°12') = csc (14°45') = 	12. A surveyor is determining the width of a river, so marks a point P, walks 125 feet, and sights the angle to Q at 62°. What is the width of the river?			
$\frac{\tan\left(\frac{3\pi}{20}\right)}{13. A rider on a 25-ft radius ferris wheel is currently located at position 0 on the picture. Determine how high off the ground the rider is at each of the other 11 locations as the carriage moves around (each position is 30° from the prior).$				
Angle 0° 30° 60° 90° 120° 15 Height 30 15 off	50° 180° 210° 240° 270° 300° 330°			
14. Use the table you made in problem 13 to plot the points and sketch in what the graph for this situation looks like.				