Name: \_\_\_

### Chapter 3 Notes

# 3.1 Day 1 - Exponential Functions, Their Graphs, and Transformations

| E | Exponential Function: Function of the form <i>f(t)</i> = <i>ab</i> <sup>t</sup> where a is the |      |                |         |       |       |                                 |     |    |    |   |   | ar | nd b is the |
|---|------------------------------------------------------------------------------------------------|------|----------------|---------|-------|-------|---------------------------------|-----|----|----|---|---|----|-------------|
|   | Exa                                                                                            | mple | <u>e</u> : Wri | ite the | e equ | ation | n for each exponential function | on. |    |    |   |   |    |             |
|   | x                                                                                              | -2   | -1             | 0       | 1     | 2     |                                 | x   | -2 | -1 | 0 | 1 | 2  |             |
|   | у                                                                                              | 0.75 | 1.5            | 3       | 6     | 12    |                                 | у   | 81 | 27 | 9 | 3 | 1  |             |

**Example**: Graph the function  $y = 2^x$  and identify the domain and range. Note:  $y = 2^x = 1(2^x)$ 



**Example**: Graph the function  $y = -4(0.5)^{x}$  and identify the domain and range.



Growth:

| Decay: |  |
|--------|--|
|        |  |

**<u>Transformations of Exponentials</u>**: Explain how each transform the graph  $f(x) = 2^x$ .

| $g(x) = 2^{x-1}$ | $g(x) = -2^x$      |  |
|------------------|--------------------|--|
| $g(x) = 2^{x+1}$ | $g(x) = 2^{-x}$    |  |
| $g(x) = 2^x - 1$ | $g(x) = 4(2)^x$    |  |
| $g(x) = 2^x + 1$ | $g(x) = 1/4 (2)^x$ |  |

**Example**: Use the graph and table for  $f(x) = e^x$  to make a graph of  $g(x) = e^{x-1} + 2$ .



## 3.1 Day 2 - Compound Interest, Graph y=ae<sup>bx</sup>, Applications

### **Modeling Population Growth**

The population of Helena in the year 2000 was 23,000. The U.S. Census Bureau found that the population then increased, on average, by 2% each year. What was the population in 2005?

| Year       | 0 | 1 | 2 | 3 | 4 | 5 |
|------------|---|---|---|---|---|---|
| Population |   |   |   |   |   |   |

**Example**: An investor places \$250,000 in an account that earns 4% interest each year. How much will it be worth in 5 years?



**Example**: The average student loan debt is \$36,000. If you took out \$9000 your freshman year and didn't make a payment for four years, how much would that \$9000 loan grow to at 7% annual interested compounded:

a) quarterly?

b) monthly?

## Lead-In: Introducing Compounding Continuously

Suppose you invest one whole dollar in an account that pays 100% interest compounded n-times per year. Find the balance for each frequency after one year.

## Balance Equation =

| Frequency   | <u>n value</u> | Balance After 1 Year                                     |
|-------------|----------------|----------------------------------------------------------|
| annually    | 1              | $1.00\left(1+\frac{1}{1}\right)^{1} =$                   |
| quarterly   | 4              | $1.00\left(1+\frac{1}{4}\right)^4 =$                     |
| monthly     | 12             | $1.00\left(1+\frac{1}{12}\right)^{12} =$                 |
| daily       | 365            | $1.00\left(1+\frac{1}{365}\right)^{365} =$               |
| hourly      | 8,760          | $1.00\left(1+\frac{1}{8760}\right)^{8760} =$             |
| each second | 31,536,000     | $1.00\left(1+\frac{1}{31,536,000}\right)^{31,536,000} =$ |

Formulas for Compound Interest

After t years, the balance, A, in an account with principal P and annual interest rate r (in decimal form) is given by the following formulas:

**1.** For *n* compounding periods per year: 
$$A = P\left(1 + \frac{r}{n}\right)^{t}$$

**2.** For continuous compounding:  $A = Pe^{n}$ .

**Example Revisited**: The average student loan debt is \$36,000. If you took out \$9000 your freshman year and didn't make a payment for four years, how much would that \$9000 loan grow to at 7% annual interested compounded continuously?

**<u>Ex</u>**: Carbon-14 is a radioactive isotope of carbon with an atomic nucleus containing 6 protons and 8 neutrons. Its presence in organic materials is the basis a type of radiocarbon dating method.

For a sample that starts with 10 grams, the quantity of carbon-14 remaining after t years can be found using



#### 3.2 Day 1 - Definition of Logarithms and Basic Properties

Warm-Up: A house purchased in 1990 for \$125,000 has increased in value by 3% each year since.

| a) What would its value be today (assume compound annually unless otherwise noted)? | b) When will it reach a value of<br>\$400,000? |
|-------------------------------------------------------------------------------------|------------------------------------------------|
|                                                                                     |                                                |

<u>Lead-In</u>: Last section we would set up exponential function like  $Q = 10^t$ . We were only ever able to find Q if given a value for t, but how can we find t if given Q? For example:  $10^t = 2500$ .

 $10^2 = 100, \quad 10^3 = 1000, \quad 10^4 = 10,000$ 

**Common Logarithm (Log) Function**: If x is a positive number, log(x) equals the exponent of 10 such that  $10^{exponent} = x$ .

| Mathematically: if | $\log(x) = y$  | then                  | or If $10^y = x$ | then  |
|--------------------|----------------|-----------------------|------------------|-------|
| log(100) = power o | of 10 that giv | es 100 =              |                  |       |
| log (100) = 2      | since          | 10 <sup>2</sup> = 100 | log(2500) =      | since |
| log(0.01) =        | since          |                       | log(-10) =       | since |

**<u>Natural Logarithm (Ln) Function</u>**: If x is a positive number, ln(x) equals the exponent of e such that  $e^{exponent} = x$ .

Mathematically: if  $\ln(x) = y$  then \_\_\_\_\_ or If  $e^y = x$  then \_\_\_\_\_

In(e) = \_\_\_\_ since

<u>General Log Function</u>:  $log_b()$ : If x is a positive number,  $log_b(x)$  equals the exponent of b such that  $b^{exponent} = x$ .

| Mathematically: if      | $y = \log_b(x)$ | then | _ or                    | if $x = b^{y}$ | then |
|-------------------------|-----------------|------|-------------------------|----------------|------|
| log <sub>7</sub> (49) = | since           |      | log <sub>3</sub> (81) = | since          |      |
| log <sub>36</sub> (6) = | since           |      | log <sub>5</sub> (1) =  | since          |      |

**Example**: If written in log form, write as an exponential. If written as an exponential, write in log form.

| $4 = \log(10,000) \longleftarrow$ | $\longrightarrow$ 5 <sup>4</sup> = 625 |
|-----------------------------------|----------------------------------------|
| $6 = \log_2(64)$                  | $ e^3 = 20.0855$                       |

#### **Basic Logarithm Properties**

| General Properties         | Common Logarithms       | Natural Logarithms      |
|----------------------------|-------------------------|-------------------------|
| 1. $\log_b 1 = 1$          | <b>1.</b> $\log 1 = 1$  | 1. $\ln 1 = 1$          |
| <b>2.</b> $\log_b b =$     | <b>2.</b> log 10 = 1    | <b>2.</b> $\ln e = 1$   |
| 3. $\log_b b^x = \sqrt{1}$ | - 3. $\log 10^x = 10^x$ | -3. $\ln e^x =$         |
| 4. $b^{\log_b x} =$        | 4. $10^{\log x} = $     | <b>4.</b> $e^{\ln x} =$ |

## 3.2 Day 2 – Graphs of Logarithms and Transformations

## Graph of Common Logarithm (Log)



Other Graphs of Log Functions: Note, all logarithmic functions look the same in general.

For the graph of  $f(x) = log_b(x)$ , the graph \_\_\_\_\_\_ as you increase the value of b (for b > 1).

# <u>Characteristics of General Log Graphs</u> $y = log_b(x)$

1. The domain is \_\_\_\_\_\_. The range is \_\_\_\_\_\_.

2. They all pass through the point (1, ).

3. They have \_\_\_\_\_ y -intercepts because there is a vertical asymptote at \_\_\_\_\_\_.

### Logarithms and Exponents are Inverses:



The equation  $f(x) = log_e(x)$  has a special notation because it is used so often in math. It is denoted f(x) = ln(x) and is called the **natural log** function.

If  $g(x) = e^x$ , fill in the table for g(x) and use it to fill in f(x)'s table

| Х  | $g(x) = e^x$ | Х | f(x) = ln(x) |
|----|--------------|---|--------------|
| -2 |              |   |              |
| -1 |              |   |              |
| 0  |              |   |              |
| 1  |              |   |              |
| 2  |              |   |              |
|    | ,            | L |              |



**<u>Transformations of Log Graph</u>**: Explain how each transform the graph  $f(x) = \log (x)$ .

| $g(x) = \log(x) + c$ |  |
|----------------------|--|
| $g(x) = \log(x) - c$ |  |
| $g(x) = \log(x + c)$ |  |
| $g(x) = \log(x - c)$ |  |

| $g(x) = -\log(x)$        |  |
|--------------------------|--|
| $g(x) = \log(-x)$        |  |
| $g(x) = c \cdot \log(x)$ |  |
| $g(x) = \log(cx)$        |  |
|                          |  |

| Examp | l <u>e</u> : Use | the graph of loរ្ | g(x) to graph 2log(x - 1) - 3                                             | <b><u>Ex</u></b> : The magnitude, R, on the Richter scale of an earthquake of                                                    |
|-------|------------------|-------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| x     | log(x)           | X 2log(x - 1) - 3 | y<br>t<br>f(x) = las x                                                    | intensity I is given by $R = \log (I/I_0)$<br>where I <sub>0</sub> is the intensity of a nearly negligible zero-level quake. The |
| 0.01  | -2               |                   | (10, 1)                                                                   | earthquake in Helena during the fall of 1935 was 1,585,000 times                                                                 |
| 0.1   | -1               |                   | $1 - (5, \log 5 = 0.7)$                                                   | as intense as a zero-level. What was it on the Richter scale?                                                                    |
| 1     | 0                |                   | $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{6}$ $\frac{1}{8}$ $\frac{10}{10}$ x |                                                                                                                                  |
| 10    | 1                |                   | _1 (1,0)                                                                  |                                                                                                                                  |
| 100   |                  |                   | $-2$ $(\frac{1}{10}, -1)$                                                 |                                                                                                                                  |
|       |                  |                   |                                                                           |                                                                                                                                  |

# 3.3 – Properties of Logarithms

# Log Properties

| Example                                | Property Name | Property |
|----------------------------------------|---------------|----------|
| $\log(10^2 \cdot 10^4) =$              |               |          |
|                                        |               |          |
| $\log\left(\frac{10^8}{10^6}\right) =$ |               |          |
| $\log((10^2)^4) =$                     |               |          |

**Example**: Simplify as much as possible using the log properties.

| log(100 <i>x</i> )                                        |                   | $\log\left(10x^2\right)$                                   |                     |
|-----------------------------------------------------------|-------------------|------------------------------------------------------------|---------------------|
|                                                           |                   |                                                            |                     |
| $log_2(\frac{x}{8})$                                      |                   | $\ln(\sqrt{e})$                                            |                     |
|                                                           |                   |                                                            |                     |
| Properties for Expanding Logari                           | thmic Expressions | Properties for Condensing Loga                             | rithmic Expressions |
| For $M > 0$ and $N > 0$ :                                 |                   | For $M > 0$ and $N > 0$ :                                  |                     |
| $1. \log_b(MN) = \log_b M + \log_b N$                     | Product rule      | $1. \log_b M + \log_b N = \log_b (MN)$                     | Product rule        |
| 2. $\log_b\left(\frac{M}{N}\right) = \log_b M - \log_b N$ | Quotient rule     | 2. $\log_b M - \log_b N = \log_b \left(\frac{M}{N}\right)$ | Quotient rule       |
| 3. $\log_b M^p = p \log_b M$                              | Power rule        | 3. $p \log_b M = \log_b M^p$                               | Power rule          |

**Example**: Use the log properties to expand as much as possible.

$$\log \left(x^5 \cdot \sqrt[3]{y}\right)$$

$$\log \left(\frac{\sqrt{x}}{100y^4}\right)$$

**Example**: Use the log properties to write as a single logarithm.

| $2\ln(x) + \frac{1}{3}\ln(x+5)$ | $2\log(x-3) - \log(x)$ |
|---------------------------------|------------------------|
|                                 |                        |
|                                 |                        |
|                                 |                        |
|                                 |                        |
|                                 |                        |
|                                 |                        |

### 3.4 Day 1– Solving Exponential Equations

<u>Lead-In</u>: Prior, if we had an exponential equation like  $A = 5000(1.03)^t$ , we would not be able to solve for t to find the time it takes for the account to grow to \$6000. We will see how to do that today.

Begin by simplifying:  $\log(x^2) = \log(4)^x = \ldots$ . What did the log do to the power?

## Using Logarithms to Solve Exponential Equations

1. Isolate the exponential expression

2. Take the log of both sides (almost always the common logarithm unless you are working with powers of *e*)

3. Simplify the expression and solve.

| $3^x + 4 = 12$ | $2 \cdot 10^x - 12 = 80$ | $4e^{2x} + 6 = 86$ | $4e^{2x} + 6 = 86$ |
|----------------|--------------------------|--------------------|--------------------|
|                |                          | *by natural log    | *by common log     |
|                |                          |                    |                    |
|                |                          |                    |                    |
|                |                          |                    |                    |
|                |                          |                    |                    |
|                |                          |                    |                    |
|                |                          |                    |                    |
|                |                          |                    |                    |
|                |                          |                    |                    |

## Solving With Variable in Exponents on Both Sides or Different Bases

Why is this "easy" to solve?  $5^{3x+4} = 5^{x-6}$ 

| Solve by matching bases | Solve by using logs  |
|-------------------------|----------------------|
| $27^{++3} = 9^{++1}$    | $27^{++3} = 9^{++1}$ |
|                         |                      |
|                         |                      |
|                         |                      |
|                         |                      |
|                         |                      |
|                         |                      |
|                         |                      |

### Solve Unique Scenarios and Applications

## 3.4 Day 2– Solving Logarithmic Equations

Recall, log(100) =, since . So, if log(x) = a, we know that

### Using Logarithm Definition to Solve Logarithm Equations

- 1. Isolate the logarithm expression
- 2. Use the definition of the logarithm to rewrite the equation in exponential form.
- 3. Solve and check.

| $log_2(x-4) + 7 = 10$ | $4\ln(3x) = 8$ | $log_2(x) + log_2(x - 7) = 3$ |
|-----------------------|----------------|-------------------------------|
|                       |                |                               |
|                       |                |                               |
|                       |                |                               |
|                       |                |                               |
|                       |                |                               |
|                       |                |                               |
|                       |                |                               |
|                       |                |                               |



<u>Aside</u>: Prove the change of base formula.

Say  $log_b(a) = n$  then  $b^n = a$ . Solve for n.

### 3.5 Day 1 – Solving Exponential Growth, Decay and Log Word Problems

Exponential Growth/Decay Equation:  $A = A_0 e^{kt}$  where  $A_0$  = original amount, k = growth/decay rate, t = time

For the following, it is growth when \_\_\_\_\_\_ and decay when \_\_\_\_\_\_

| Yearly Growth                     | Compounding Interest                                                    | Compounding Continuously            |
|-----------------------------------|-------------------------------------------------------------------------|-------------------------------------|
| $y = a(1 + r)^t$                  | $y = a \left(1 + \frac{r}{n}\right)^{nt}$ -Used exclusively for banking | $y = ae^{rt}$                       |
| -Used to track the value of items | purposes.                                                               | -Used to model real-life data.      |
| over time.                        | Ex: A \$700 computer is purchased                                       | -A population of wolves in a        |
| Ex: The value of a \$160 thousand | on a credit card at 18% interest                                        | national park starts out at 110 and |
| house increases by 4% annually.   | compounded monthly.                                                     | increases by 20% per year.          |
| Eq:                               | Eq:                                                                     | Eq:                                 |

Ex: The number of total confirmed cases of COVID-19 worldwide during the spring/summer of 2020 followed an exponential model. Use the two points from two different days to determine the exponential equation for this if we let t be days since March 1.

Step 1: find the exponential growth rate, k

Step 2: find the initial amount

Ex: The equation we should have obtained was \_\_\_\_\_\_.

| 1) What do each of the values in the equation represent in real-life? | 2) Use your equation to estimate the total number of confirmed cases worldwide by Sept 1 (184 days). |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                                                                       |                                                                                                      |
|                                                                       |                                                                                                      |
|                                                                       |                                                                                                      |
|                                                                       |                                                                                                      |
|                                                                       |                                                                                                      |
|                                                                       |                                                                                                      |
|                                                                       |                                                                                                      |

**Example**: Assume there is a savings account that provides interest compounded continuously at interest rate, 3%. How long would it take to double?

**Carbon-14 Dating**: used to date fossils or artifacts by using the fact that carbon-14 has a half-life of \_\_\_\_\_\_ years.

Half-life: amount of time it takes something to decay to \_\_\_\_\_\_ of the original amount.

**Example**: In 1991, the body of Otzi was found by two hikers in the Alps of Northern Italy. Examinations revealed that his tissue contained 47% of its original carbon-14. When did he die?

<u>Step 1:</u> use the half-life to find decay rate *r*.

<u>Step 2:</u> use r and the entire equation to find age.

**Example**: An isotope has a half-life of *t<sub>h</sub>*. Find a general formula for the decay rate of the isotope if you are given its half-life.

#### 3.5 Day 2 – Log and Logistic Model

**Example** ph Application: The pH-scale measures the acidity of different solutions by using a log scale to record the concentration of hydrogen ions. The equation is pH = -log(x) with x = hydrogen ion concentration in moles/liter

Question: Find the hydrogen ion concentration for the most acidic rainfall ever with a pH of 2.4.

**<u>Ex</u>**: The following equation relates the level of sound  $\beta$  (in decibels) with an intensity *I* where  $I_0$  is the faintest sound audible to the human ear at 10<sup>-12</sup> Watts/m<sup>2</sup>. Equation:  $\beta = 10\log(I/I_0)$ .

| a) Find the dB reading for $I = 10^{-4} W/m^2$ (door slamming)                                                      | b) Find the dB reading for <i>I = 0.1 W/m</i> <sup>2</sup> (Grizzly football game) |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| c) Through installing noise suppression material in an auditorio<br>the percent decrease in the intensity level, I? | ım, the noise level decreased from 93 dB to 80 dB. What was                        |

<u>Introducing the Logistic Growth Model</u>: In a prior lesson, we modeled the spread of COVID-19 across the world and found the equation for the number of total cases to be  $A = 0.389e^{0.0248t}$  where A = cases (millions), t = days since March 1, 2020.

What is the problem with this model? What does it predict will always be happening? Is that a fair assumption?

## Logistic Growth Model

The mathematical model for limited logistic growth is given by

$$f(t) = \frac{c}{1 + ae^{-bt}}$$
 or  $A = \frac{c}{1 + ae^{-bt}}$ ,

where a, b, and c are constants, with c > 0 and b > 0.

As time increases  $(t \rightarrow \infty)$ , the expression  $ae^{-bt}$  in the model approaches 0, and A gets closer and closer to c. This means that y = c is a horizontal asymptote for the graph of the function. Thus, the value of A can never exceed c and c represents the limiting size that A can attain.

**<u>Ex</u>**: The function below describes the number of people, f(t), who have become ill with a virus t weeks after its initial outbreak in a town with 30,000 inhabitants. \*Assuming no preventative measures are taken

$$f(t) = \frac{30,000}{1 + 1200e^{-0.5t}}$$

a) How many people were sick when the epidemic began?

b) How many people were sick after 2 weeks?

c) What is the limiting size of the population that can become sick?

d) If the town will lockdown when 5% of the people become sick, how long is that?

### Sketch of the graph of the function

