Honors Precalculus	Name:	Per:
Chapter 2 PRACTICE TEST		
If you need additional space, use an	extra sheet.	
1. Graph the following	2. Write the equation, in	3. Write the equation for a rational
function by plotting the	vertex form	function that has a V.A. at $x = 4$,
vertex and using "a" to find	$f(x) = a(x-h)^2 + k,$	zero at $x = -3$, and a H.A. at $y = 2$.
two other points.	for the parabola with x-	
$y = -3(x+2)^2 + 5$	intercepts of 5 and 7 and a maximum of 3.	
Vertex = (,)		
$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $		
4. A company has a large piece or rectangle that produces the ma	f land and can afford 500 feet of fend ximum enclosed area and state what	cing for each plot. Find the dimensions of the that area is.
Step 1: Write a perimeter and area equation	Step 2: Use substitution to write the are	a equation so it only contains one variable.
Step 3: Find the maximum of the area equation	and state your final answer as a complete ser	ntence.
5. Circle the correct end-behavio	r for each.	
$f(x) = -x^3 - 4x^2$ $f(x)$	$-x^4(x-1)$ $f(x)x^2 +$	$f(x) = x^3(x-1)^3$
$ \begin{bmatrix} f(x) - x & -4x \\ 0 & 0 \end{bmatrix} $	b) $f(x) = -x + x$	f(x) = x (x - 1)
	$d \sim d \sim$	$(\gamma \land \gamma \land \gamma) \land \gamma$
6 Graph the polynomial below (he sure to mark your y avia alagrady)	Also, state the y
intercept.	be sure to mark your x-axis <u>clearry</u>).	Also, state the y-
$y = (x - 2)^2 (x + 1)^2$		
y-intercept: (,)		
7. Use the Rational Zero Theorer	n to a) state all possible rational roots $f(x) = 4x^3 - 11x^2 + 10x$	s and then b) find one that's actually a root. $\alpha - 3$
a) Possible Rational Roots:		
b) One That is Actually a Root (show l	now you know):	

 8. Use either long or synthetic division to divide the following: (5x³ - 6x² + 3x + 14) ÷ (x + 1) 	9. Write the equation for a 3^{rd} degree polynomial that has a zero at 4 with multiplicity two and a zero at -3 with $f(0) = -24$.	10. Use the fact that -3 is a zero of $f(x) = x^3 + 3x^2 + 4x + 12$ to find the others.	
11. State the vertical, horizontal, or slant asymptote for the graph of each function and any holes.			
$y = \frac{8x-8}{x^2+2x-3}$ $y = \frac{1}{x^2-1}$	$\frac{5x^2}{+8x+12} \qquad \qquad y = \frac{x^2 - x + 1}{x - 3}$		
12. Put all this together and graph the rational function $g(x) = \frac{x-2}{x^2-3x-2}$			
HA:	VA:		
Zero(s):	Y-int:	-5 0 5	
13. Simplify and write in standard form $a + bi$			
$\left(\frac{3}{4} + \frac{1}{5}i\right) - \left(\frac{2}{3} - \frac{1}{2}i\right)$	$(5-i)^2 - (5+i)^2$)2	
$\frac{1-7i}{2+3i}$	$\sqrt{50} + \sqrt{-81} - $	$\overline{32} + \sqrt{-16}$	

14. For the function $f(x) = x^4 - 2x^3 + 8x^2 - 18x - 9$,

a) How many zeros does it have?

b) If you are told 3*i* is a zero, what other zero do you know exists? Why do you know that?