\qquad

Chapter 2 Notes

Review of Factoring Quadratics and Completing the Square

Lead-In: Recall how to multiply (two techniques shown)

| Multiple Distribution |
| :--- | :--- | :--- | :--- |
| $\qquad(x+3)(x-5)$ | | Table |
| :--- |
| $(x+3)(x-5)$ |
| |

Factor $x^{2}+b x+c$ and $a x^{2}+b x+c$

$x^{2}+4 x-12$	$x^{2}-20 x+42$	
Factoring with fractions $3 x^{2}+16 x+5$	Factoring mentally $3 x^{2}+16 x+5$	
$8 x^{2}-10 x+3$		$2 x^{2}-9 x+10$
Solve with factoring		
$2 x^{2}-5 x-3=0$	Solve by square roots	

Solve by completing the square

| $x^{2}+6 x-20=0$ | $x^{2}+9 x+5=0$ |
| :---: | :---: | :--- | :--- | :--- |
| x^{2} | |
| | |

2.1 Day 1 - Write and Graph in Vertex Form

Lead - In: Use the Desmos Investigation to determine the effect of each parameter for Vertex Form:

$$
f(x)=a(x-h)^{2}+k
$$

Parameter	Transformation to Parent Function $f(x)=x^{2}$
a	
h	
k	

Example: State the vertex for each graph. Do you see how it relates to its equation?

How to use " a " to Graph Outside of the Vertex

Steps to Graph in Vertex Form:

1)
2)
3)

Example: Working Backwards. Find the equation if given the graph.

Three Forms for Writing and Graphing a Quadratic Function:

2.1 Day 2 - Converting Between Three Forms for Quadratics

Take the function $f(x)=2 x^{2}-5 x-3$ and use a graphing calculator's CALC functions: value (when $x=0$), zero, and minimum or maximum to determine the following.

- $\quad y$-intercept
- x-intercepts
- vertex

According to physics, the path of a projectile moving through the air follows the path traced by the equation $h(t)=-16 t^{2}+v t+s$
$\mathrm{t}=$ time (sec)
$\mathrm{h}(\mathrm{t})=$ height at time $\mathrm{t}(\mathrm{ft})$
$\mathrm{v}=$ initial velocity upwards (ft / s)
$\mathrm{s}=$ starting height (ft)
If a model rocket is launched with a takeoff speed of $200 \mathrm{ft} / \mathrm{s}$ from a 5 ft platform,
a) Write the equation
b) the maximum height
c) how long the rocket was in the air (no parachute)

2.2 Day 1 - End Behavior and Zeros

Lead-In: Sketch a graph for $f(x)$ and $g(x)$ and then find the values.

$f(x)=x^{2}$				
$f(1000)=$		$g(x)=x^{2}$		
$g(1000)=$				
$f(-1000)=$				
$g(-1000)=$			\quad	
:---				

There are 4 graphs shown below. What do you notice?

Leading Term: $a_{n} x^{n}$

	Odd \boldsymbol{n}	Even \boldsymbol{n}
$a_{\boldsymbol{n}}>0$		
$a_{n}<0$		

Example: Use the leading coefficient of each to determine the end behavior.

Ex: Find all the real zeros of $f(x)=x^{3}+2 x^{2}-3 x$ and mark the x intercepts on the graph shown.

Ex: For the function $f(x)=2 x^{2}+12 x+8$, find the zeros (a) algebraically and (b) through a graphing utility.
a)
b)

2.2 Day 2 - Multiplicity, Writing and Graphing Polynomial Equations

$y=(x-3)(x+2)^{2}(x-1)^{3}$	What do you notice?	Degree	Action
-		1	
\int^{50}		2	
\cdots	Multiplicity:	3	
\bigcirc		Even	
-2 -1 0 1 2 3		Odd	

Steps for Graphing a Polynomial

1) Factor, if not already in factored form.
2) Plot the x-intercepts and y-intercept (constant term).
3) Sketch in the end behavior.
4) Use the multiplicity of each term to determine behavior at x -intercepts.
5) Sketch picture, plotting a few additional points if necessary. Good to consider points between known xintercepts.

Examples

2.3 Day 1 - Division of Polynomials

Example: Similar to how we can do long division with numbers, we can do it with polynomials as well.

$\left(3 x^{3}+2 x^{2}-19 x+6\right) \div(x+3)$	$\left(x^{2}+4 x+12\right) \div(x+3)$
Verify our answer is correct.	$\left(2 x^{3}+2 x^{2}-4\right) \div(x-1)$

What do you notice? How are they similar?

3 | 1 | 4 | -5 | 5 |
| ---: | ---: | ---: | ---: |
| | 3 | 21 | 48 |
| 1 | 7 | 16 | 53 |

Synthetic Division:

To divide $a x^{3}+b x^{2}+c x+d$ by $x-k$, use the following pattern.

If $x=-2$ is an x-intercept, use Synthetic Division to find the other intercepts for the graph of $f(x)=x^{3}-7 x-6$

Use synthetic division to divide even with a remainder.

$$
\left(5 x^{3}+6 x+8\right) \div(x+2)
$$

2.3 Day 2 - Factor Theorem, Rational Root Test, and Finding All Zeros

Factor Theorem: a polynomial $f(x)$ has a factor $(x-k)$ if and only if:

Example: Show that ($x-2$) is a factor of $f(x)=2 x^{4}+7 x^{3}-$ $4 x^{2}-27 x-18$ by two different ways.	How do you find x-intercepts when you're not given one to start? Begin by trying to recognize the pattern below $\begin{aligned} & x=\frac{3}{2} \quad x=-\frac{1}{3} \\ 0= & (2 x-3)(3 x+1) \\ 0= & 6 x^{2}-7 x-3 \\ y= & 6 x^{2}-7 x-3 \end{aligned}$
Rational Zero Theorem/Test	

Example: Use the Rational Zero Theorem to state all possible zeros in \#1 and find all of the zeros in \#2.

2.4 - Complex Solutions and Operations with Complex Numbers

Imaginary Unit (i):	
$2 x^{2}-3=-53$	Principal Square Root:

Complex Number: number in the form $a+b i$ where a is the real part and $b i$ is the imaginary part.

$-4+6 i$	$2 i=0+2 i$	$3=3+0 i$
a, the real part, is -4.	b, the imaginary part, is 6.	a, the real part, is 0.
b, the imaginary part, is 2.	a, the real part, is 3.	b, the imaginary part, is 0.

Example: add and subtract complex numbers (just like adding and subtracting like terms)

$(2+6 i)+(12-3 i)$	$(-3+4 i)-(5 i)$

Example: multiply complex numbers like you do when multiplying binomials (think multiple distribution or FOIL if it helps)

$(2+3 i)(5-4 i)$	$(5+2 i)(5-2 i)$

Divide Complex Numbers: When we divide complex numbers, we ensure there is only a real number in the denominator (what would it even mean to divide by $4+3 i$ anyway?). We do this by multiplying the statement by the complex conjugate of the denominator.

Complex Conjugate:

$$
\begin{aligned}
& (a+b i)(a-b i)=a^{2}+b^{2} \\
& (a-b i)(a+b i)=a^{2}+b^{2}
\end{aligned}
$$

Example: Divide the complex numbers.
Example: Challenge

$$
\frac{(2+5 i)}{4+3 i}
$$

$$
(3+\sqrt{-5})(7-\sqrt{-10})
$$

2.5 - Fundamental Theorem of Algebra and Finding all Zeros

Fundamental Theorem of Algebra: If $f(x)$ is a polynomial of degree $n(n>0)$, then f has \qquad in the complex number system.

Ex: For the polynomial $f(x)=x^{3}+16 x, \quad$ Ex: Find all the zeros of $f(x)=x^{4}-3 x^{3}+6 x^{2}+2 x-60$ given a) state the maximum amount of zeros that $(1+3 i)$ is a zero of f. and then b) verify the values given are the zeros.

Ex: Find all the zeros of $f(x)=x^{5}+x^{3}+2 x^{2}-12 x+8$

Ex: Find a third-degree polynomial that has zeros 2 and (1-i) with a y-intercept of 12.

Ch KeyConcept Rational Functions
Words
A rational function can be described by an equation of the form $y=\frac{p}{q}$, where p and q are polynomials and $q \neq 0$.
Parent function: $f(x)=\frac{1}{x}$
Type of graph: hyperbola
Domain: $\quad\{x \mid x \neq 0\}$
Range: $\quad\{y \mid y \neq 0\}$

\mathbf{x}	\mathbf{y}
-2	
-1	
$-1 / 2$	
$-1 / 4$	
0	
$1 / 4$	
$1 / 2$	
1	
2	

Lead-In: Graph the parent function $y=\frac{1}{x}$

Vertical Asymptote: the imaginary vertical lines (x equations) that occur where the domain is restricted. They are the values that make your denominator (but not numerator) \qquad .

Example: State the domain, sketch in the vertical asymptote and use the graph of $y=\frac{1}{x}$ to sketch each.

Example: State the horizontal asymptote of each graph, if there is one.

$y=\frac{3 x}{x^{2}+5}$	$y=\frac{4 x}{x-1}$	$y=\frac{4 x^{2}}{x^{2}-1}$	$y=\frac{2 x^{3}-5 x}{x^{2}+3 x-1}$

$y=\frac{x^{2}-x-12}{x^{2}+7}$	$y=\frac{3 x}{x^{2}-10}$	$y=\frac{5}{x-3}$

Vertical Asymptotes: value(s) of x that make the \qquad 0. These appear as vertical imaginary lines.

Horizontal Asymptotes: the value of y that your graph approaches as x gets very large. These appear as
\qquad imaginary lines.

Zeros: x-values that \qquad , and therefore the output, 0 . These show up in your graph as the x intercepts.

Example: Put all this together and graph a rational function.
$f(x)=\frac{2 x+4}{x-1} \quad \mathrm{HA}:$
VA:

Zeros:
Y-int

Application Example: A pharmaceutical company wants to begin production of a new drug.
The fixed cost (research, testing, equipment) is $\$ 2,500,000$.
On top of that, the drug costs $\$ 2,000$ per gram to produce.
Total Cost Equation -> C(t) =
Why is it impractical for the company to produce small quantities? For example, evaluate and interpret $\mathrm{C}(10)$.

Can you define a function to calculate the average cost to produce q grams of the drug? Evaluate/interpret $\bar{C}(10,000)$.

What is the horizontal asymptote for the average cost function? What does it mean in real life?

2.7 Day 1 - Graphs of Rational Functions

Steps for Graphing Rational Functions

	Step	
1.	Simplify $f(x)$	
2.	Sketch H.A.	
3.	Sketch V.A.	
4.	Plot x-ints	
5.	Plot y-int	
6.	Other points	

Example: Apply the steps above and graph the following.

Example: Use the graph to fill in each statement.

As $x \rightarrow-3^{-}, \quad f(x) \rightarrow$.
As $x \rightarrow-3^{+}, \quad f(x) \rightarrow$ \qquad As $x \rightarrow-\infty, \quad f(x) \rightarrow$ \qquad
As $x \rightarrow 1^{-}, \quad f(x) \rightarrow$ \qquad .

As $x \rightarrow \infty, \quad f(x) \rightarrow$
As $x \rightarrow 1^{+}, \quad f(x) \rightarrow$ \qquad

Example: Graph rational functions with multiple vertical asymptotes.

2.7 Day 2 - Slant Asymptotes

For rational function, $f(x)=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0}}$
-If the degree of the denominator is greater than the degree of the numerator, the HA will be \qquad -.
-If the degree of the denominator is equal to the degree of the numerator, the HA will be \qquad .
-If the degree of the denominator is less than the degree of the numerator, the HA will \qquad and

Example: What is the horizontal asymptote for the following? What if we rewrote it using division? $f(x)=\frac{2 x^{2}-5 x+5}{x-2}$

Example: Graph each and always factor first if you can.

