Name: _____ Chapter 2 Notes

Review of Factoring Quadratics and Completing the Square

Lead-In: Recall how to multiply (two techniques shown)

Multiple Distribution	Table	
(x+3)(x-5)	(x+3)(x-5)	· · · · · · · · · · · · · · · · · · ·

Factor $x^2 + bx + c$ and $ax^2 + bx + c$

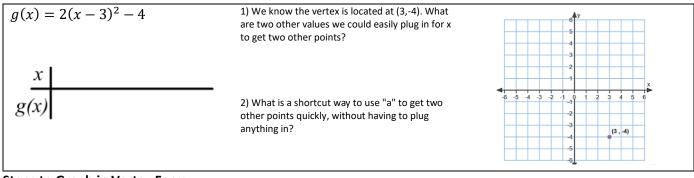
$x^2 + 4x - 12$	$x^2 - 20x + 42$	
Factoring with fractions $3x^2 + 16x + 5$	Factoring mentally $3x^2 + 16x + 5$	
$8x^2 - 10x + 3$	$2x^2 - 9x + 10 \qquad 4x^2 + 7x - 2$	
Solve with factoring $2x^2 - 5x - 3 = 0$	Solve by square roots $2x^2 - 98 = 0$	

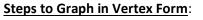
Solve by completing the square

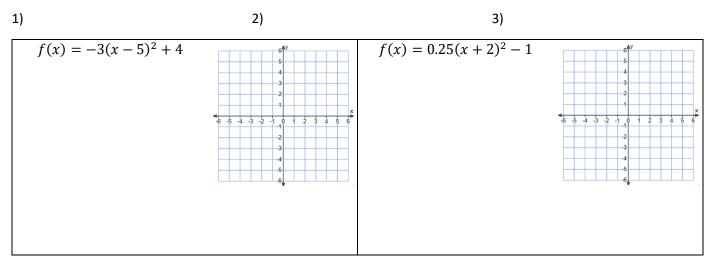
$$\begin{array}{c|c} x^2 + 6x - 20 = 0 \\ \hline x^2 \\ \hline \end{array} = 20 \end{array} \qquad \begin{array}{c|c} x^2 + 9x + 5 = 0 \\ \hline x^2 \\ \hline \end{array} = -5 \\ \hline \end{array}$$

2.1 Day 1 – Write and Graph in Vertex Form

<u>Lead – In</u>: Use the Desmos Investigation to determine the effect of each parameter for Vertex Form:


$$f(x) = a(x-h)^2 + k$$


Parameter	Transformation to Parent Function $f(x) = x^2$
а	
h	
k	


Example: State the vertex for each graph. Do you see how it relates to its equation?

$f(x) = (x - 2)^2 + 3$	$f(x) = (x+1)^2 - 2$
10	5
5	

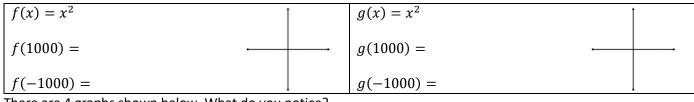
How to use "a" to Graph Outside of the Vertex

Example: Working Backwards. Find the equation if given the graph.

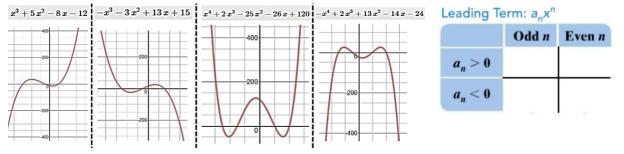
1) Use vertex	2) Plug in other point to solve for <i>a</i>	
		(4, 5)
		0 5 10
3) Write full equation		(6, -3)

Standard Form	Factored From	Vertex Form
$f(x) = ax^2 + bx + c$	f(x) = a(x-m)(x-n)	$f(x) = a(x-h)^2 + k$
- Tells you the y-int (c) - "a" tells you how the graph opens	 Tells you the factors (x- intercepts) at m and n. "a" tells you how the graph opens 	- Tells you the vertex is at (h, k) - "a" tells you how the graph opens
<u>Example</u>	<u>Example</u>	<u>Example</u>
<u>Key Info:</u>	<u>Key Info:</u>	<u>Key Info:</u>
Graph:	Graph:	Graph:

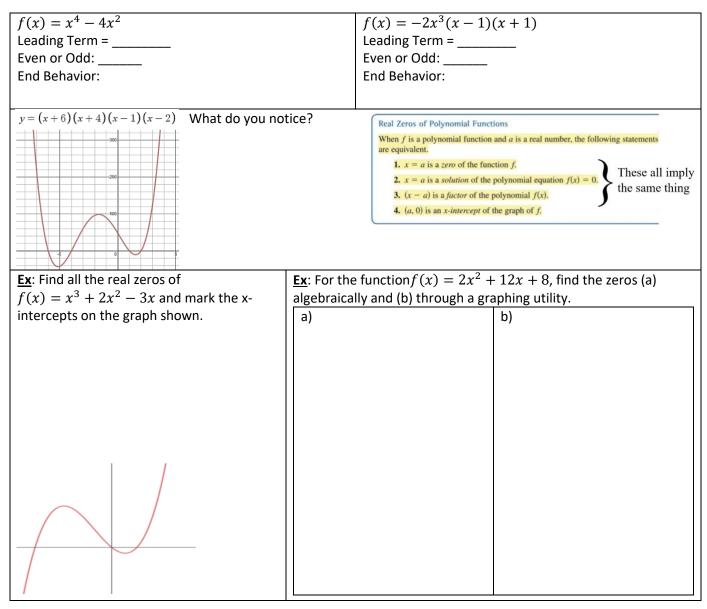
Three Forms for Writing and Graphing a Quadratic Function:


2.1 Day 2 – Converting Between Three Forms for Quadratics

Standard	Standard
$f(x) = ax^2 + bx + c$ $f(x) = a(x-m)(x-n)$ $f(x) = a(x-h)^2 + k$ Factor Convert $f(x) = 2x^2 + 7x + 3$ to factored form.	$f(x) = ax^2 + bx + c$ $f(x) = a(x-m)(x-n)$ $f(x) = a(x-h)^2 + k$ Complete the square Convert $f(x) = 2x^2 + 8x + 7$ to vertex form.
<u>Takeaway</u> : For a quadratic function $f(x) = ax^2 + bx + c$,	Standard
the vertex will be found at	$f(x) = ax^2 + bx + c$ $f(x) = a(x-m)(x-n)$ $f(x) = a(x-h)^2 + k$ Expand by multiplying
<u>Example</u> : Find the vertex of $f(x) = 2x^2 + 8x + 7$	Convert $f(x) = 2(x - 3)^2 - 8$ to standard form and
using the above result.	state the y-intercept.

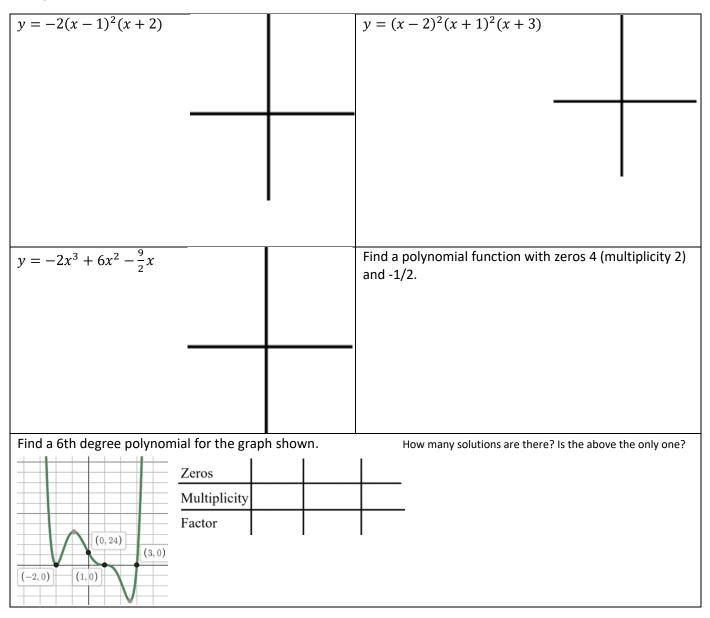

Take the function $f(x) = 2x^2 - 5x - 3$ and use a graphing calculator's CALC functions: value (when $x = 0$), zero, and minimum or maximum to determine the following.	According to physics, the path of a projectile moving through the air follows the path traced by the equation $h(t) = -16t^2 + vt + s$ t = time (sec) h(t) = height at time t (ft) v = initial velocity upwards (ft/s) s = starting height (ft)
• y-intercept	If a model rocket is launched with a takeoff speed of 200 ft/s from a 5 ft
• x-intercepts	platform, a) Write the equation
vertex	b) the maximum height
• Vertex	c) how long the rocket was in the air (no parachute)

2.2 Day 1 – End Behavior and Zeros


Lead-In: Sketch a graph for f(x) and g(x) and then find the values.

There are 4 graphs shown below. What do you notice?

Example: Use the leading coefficient of each to determine the end behavior.


2.2 Day 2 – Multiplicity, Writing and Graphing Polynomial Equations

$y = (x-3)(x+2)^2(x-1)^3$ What do you notice?	Degree Action
	1
50	2
Multiplicity:	3
•	Even
	Odd
-2 -1 0 1 2 3	

Steps for Graphing a Polynomial

1) Factor, if not already in factored form.	4) Use the multiplicity of each term to determine
	behavior at x-intercepts.
2) Plot the x-intercepts and y-intercept (constant	
term).	5) Sketch picture, plotting a few additional points if
	necessary. Good to consider points between known x-
3) Sketch in the end behavior.	intercepts.

Examples

2.3 Day 1 – Division of Polynomials

Example: Similar to how we can do long division with numbers, we can do it with polynomials as well.

$(3x^3 + 2x^2 - 19x + 6) \div (x + 3)$	$(x^2 + 4x + 12) \div (x + 3)$
Verify our answer is correct.	$(2x^3 + 2x^2 - 4) \div (x - 1)$
Quotient $x - 3)\overline{x^{3} + 4x^{2} - 5x + 5}$ $\xrightarrow{\oplus 3 \oplus 3x^{2}}_{(c = 3)} \xrightarrow{\text{Divisor}}_{(c = 3)} \xrightarrow{7x^{2} - 5x}_{(c = 3)} \xrightarrow{16x + 5}_{(c = 48)}_{(c = 48)}$ $x - 3)\overline{x^{3} + 4x^{2} - 5x + 5}$ $\xrightarrow{\oplus 3x^{2} - 5x}_{(c = 3)} \xrightarrow{\text{Dividend}}_{(c = 48)}$ $3 = 1 - 4 - 5 - 5x + 5 - 5x + 5 - 5x + 5x + 5x + $	What do you notice? How are they similar? Solution Synthetic Division: To divide $ax^3 + bx^2 + cx + d$ by $x - k$, use the following pattern. b = c - coefficients of dividend of dividend biases bias
If $x = -2$ is an x-intercept, use Synthetic Division to find the other intercepts for the graph of $f(x) = x^3 - 7x - 6$	Use synthetic division to divide even with a remainder. $(5x^3 + 6x + 8) \div (x + 2)$

2.3 Day 2 – Factor Theorem, Rational Root Test, and Finding All Zeros

Factor Theorem: a polynomial *f*(*x*) has a factor (*x* – *k*) if and only if: _____

Example: Show that (x-2) is a factor of $f(x) = 2x^4 + 7x^3$ -
 $4x^2 - 27x - 18$ by two different ways.How do you find x-intercepts when you're not given one
to start? Begin by trying to recognize the pattern below
 $x = \frac{3}{2}$ $x = -\frac{1}{3}$
0 = (2x - 3)(3x + 1)
 $0 = 6x^2 - 7x - 3$
 $y = 6x^2 - 7x - 3$
 $y = 6x^2 - 7x - 3$ **Rational Zero Theorem/Test**
If $f(x) = a_nx^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$ has integer coefficients then
Possible Rational Zeros =

Example: Use the Rational Zero Theorem to state all possible zeros in #1 and find all of the zeros in #2.

$f(x) = 15x^3 + 14x^2 - 3x - 2$	$f(x) = x^3 + 2x^2 - 5x - 6$ Constant Term: Leading Coefficient:
Constant Term:	
Leading Coefficient:	
Use the Rational Zero Theorem from our	Find all the real zeros of $f(x) = x^4 - 5x^3 + 3x^2 + x$ and do not round (need
prior result to graph the function	exact answers).
$f(x) = x^3 + 2x^2 - 5x - 6$	
Zeros:	
x-ints:	
y -int:	

2.4 – Complex Solutions and Operations with Complex Numbers

Imaginary Unit (i):	Principal Square Root:
<i>i</i> =	$\sqrt{-a} =$
$2x^2 - 3 = -53$	$x^2 - 4x + 6 = 0$

<u>Complex Number</u>: number in the form a + bi where *a* is the real part and *bi* is the imaginary part.

-4 + 6i	2i = 0 +	2i	3 = 3 -	+ 0 <i>i</i>
a, the real b, the imaginary part, is -4. part, is 6.	a, the real part, is 0.	b, the imaginary part, is 2.	a, the real part, is 3.	b, the imaginary part, is 0.

Example: add and subtract complex numbers (just like adding and subtracting like terms)

(-3+4i) - (5i)	
	(-3+4i) - (5i)

Example: multiply complex numbers like you do when multiplying binomials (think multiple distribution or FOIL if it helps)

(2+3i)(5-4i)	(5+2i)(5-2i)

Divide Complex Numbers: When we divide complex numbers, we ensure there is only a real number in the denominator (what would it even mean to divide by 4 + 3i anyway?). We do this by multiplying the statement by the complex conjugate of the denominator.

Complex Conjugate:

$$(a + bi)(a - bi) = a^2 + b^2$$

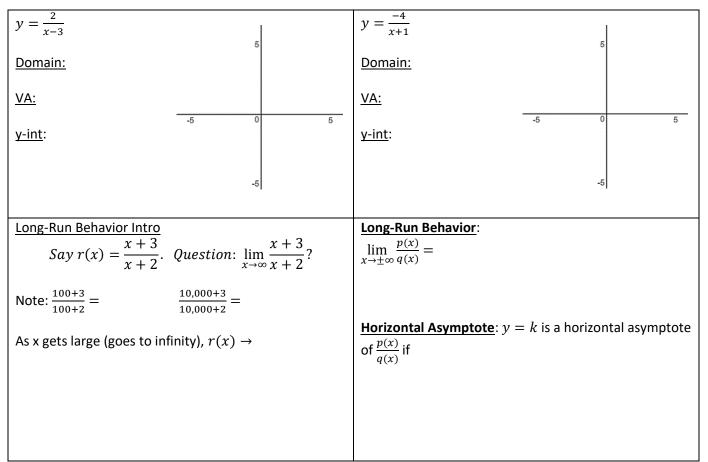
 $(a - bi)(a + bi) = a^2 + b^2$

Example: Divide the complex numbers.

Example: Challenge

<u>(2+5<i>i</i>)</u>	$(3+\sqrt{-5})(7-\sqrt{-10})$
4+3 <i>i</i>	

2.5 – Fundamental Theorem of Algebra and Finding all Zeros


(x-4i)(x+4i)	(x+4i)(x+4i)

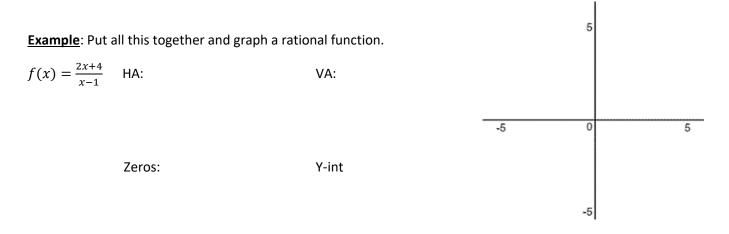
2.6 Asymptotes and Domain of Rational Functions

5 Key C	oncept Rational Functions	x	У	<u>Lead-In</u> : Graph the parent function $y =$
Words	A rational function can be described by	-2		y ⁵
	an equation of the form $y = \frac{p}{q}$, where	-1		
	p and q are polynomials and $q \neq 0$.	-1/2		2
	Parent function: $f(x) = \frac{1}{x}$	-1/4		
	Α	0		5 -4 -3 -2 -1 1 2 3 4 ×5
	Type of graph: hyperbola	1/4		
	Domain: $\{x \mid x \neq 0\}$	1/2		
	Range: $\{y \mid y \neq 0\}$	1		
	$\{y_1, y_2 \neq 0\}$	2		

<u>Vertical Asymptote</u>: the imaginary vertical lines (x equations) that occur where the domain is restricted. They are the values that make your denominator (but not numerator) _______.

Example: State the domain, sketch in the vertical asymptote and use the graph of $y = \frac{1}{x}$ to sketch each.

Example: State the horizontal asymptote of each graph, if there is one.


$y = \frac{3x}{x^2 + 5}$	$y = \frac{4x}{x-1}$	$y = \frac{4x^2}{x^2 - 1}$	$y = \frac{2x^3 - 5x}{x^2 + 3x - 1}$

$y = \frac{x^2 - x - 12}{x^2 + 7}$	$y = \frac{3x}{x^2 - 10}$	$y = \frac{5}{x-3}$

Vertical Asymptotes: value(s) of x that make the ______ 0. These appear as vertical imaginary lines.

Horizontal Asymptotes: the value of y that your graph approaches as x gets very large. These appear as _____ imaginary lines.

Zeros: x-values that ______, and therefore the output, 0. These show up in your graph as the xintercepts.

Application Example: A pharmaceutical company wants to begin production of a new drug.

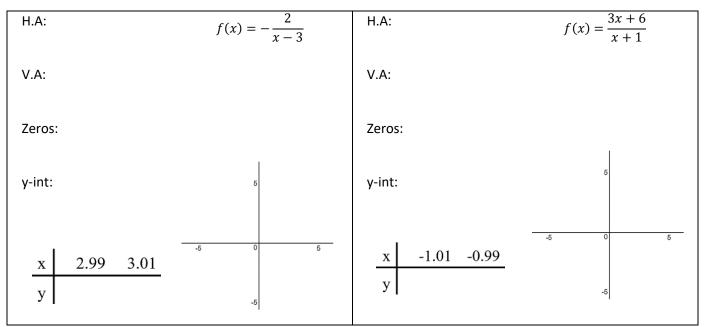
The fixed cost (research, testing, equipment) is \$2,500,000.

On top of that, the drug costs \$2,000 per gram to produce.

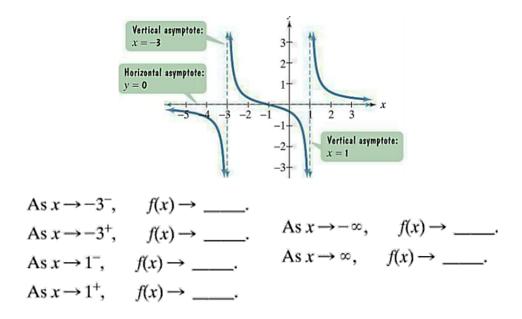
Total Cost Equation -> C(t) =

Why is it impractical for the company to produce small quantities? For example, evaluate and interpret C(10).

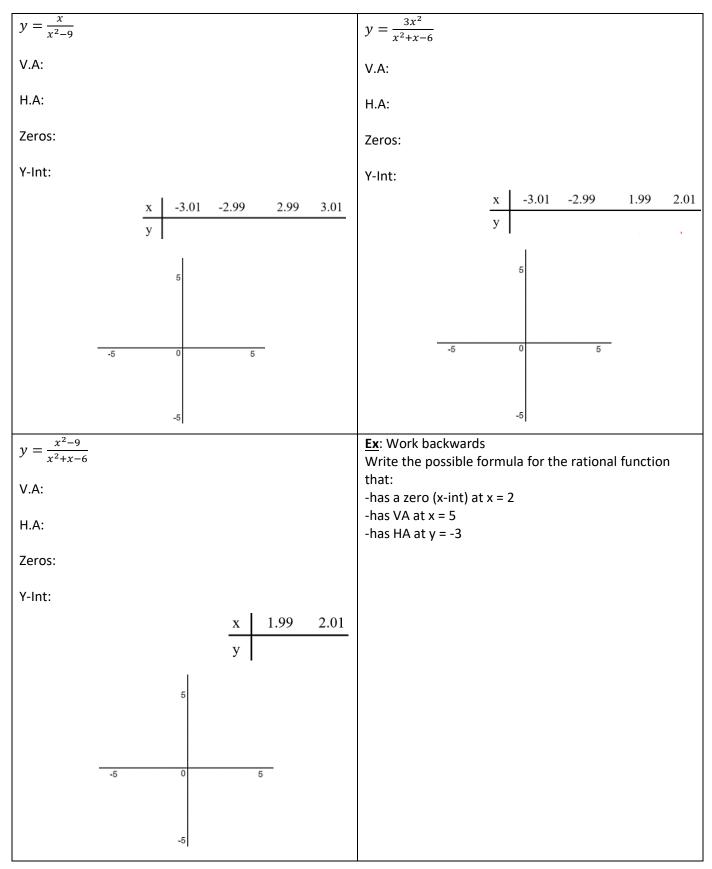
Can you define a function to calculate the average cost to produce q grams of the drug? Evaluate/interpret $\bar{C}(10,000).$


What is the horizontal asymptote for the average cost function? What does it mean in real life?

2.7 Day 1 – Graphs of Rational Functions

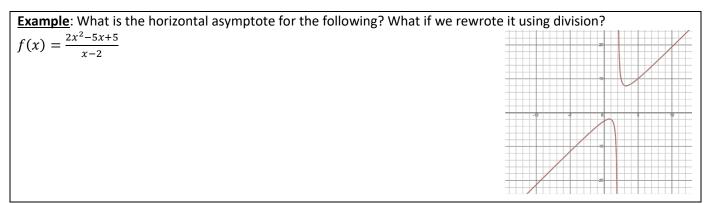

Steps for Graphing Rational Functions

Step	How
1. Simplify $f(x)$	
2. Sketch H.A.	
3. Sketch V.A.	
4. Plot x-ints	
5. Plot y-int	
6. Other points	


Example: Apply the steps above and graph the following.

Example: Use the graph to fill in each statement.

Example: Graph rational functions with multiple vertical asymptotes.



2.7 Day 2 – Slant Asymptotes

For rational function, $f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_0}$

-If the degree of the denominator is greater than the degree of the numerator, the HA will be ______. -If the degree of the denominator is equal to the degree of the numerator, the HA will be ______.

-If the degree of the denominator is less than the degree of the numerator, the HA will ______ and

Example: Graph each and always factor first if you can.

$f(x) = \frac{x^3}{2x^2 - 8}$			10
S.A:			
V.A:			-5
Zeros:	-10	-6	0 5 10
Y-Int:			
x -2.01 -1.99 1.99 2.01			5
У			10
$f(x) = \frac{x^3}{x^2 + 4}$			10
S.A:			
V.A:			
Zeros:	-10	-6	0 5 10
Y-Int:			
x -6 -4 -2 2 4 6			5
У			-10