1.1/1.3 – Geometry Definitions and Distance & Midpoint Formulas

Point: a location that has no or	Example A O-D
	Name:
Line: a straight one-dimensional figure having no	Example:
thickness and extending infinitely in both directions.	
Between any two points there is exactly line.	Name:
Plane: flat surface made up of at least points	Example
(not on the same line) that extends infinitely in all	с. 2-D
directions.	Name:
<u>Collinear</u> :	Coplanar:

Example

a) Give two different names for a line containing point Z.	ŧl
b) Give two different names for the plane.	Y R M
c) Are W and Y collinear? d) Are W and R collinear?	n B
e) Are W and R coplanar? Are W and Z coplanar?	Z

Intersection: the set of all points two or more figures have ______.

Two lines intersect at a	e e m
Two planes intersect at a	B r
Two shapes intersect at a	circle ellipse parabola hyperbola

Example

Example

1.4/1.5 – Angle Measure and Relationships

<u>Ray:</u>

Angle:

Angle Pairs			Complementary Angles:
Adjacent Angles:	Linear Pair:	Vertical Angles:	
			Supplementary Angles:

<u>Ex:</u> Two supplementary angles have a	<u>Ex</u> : Find x so that \overrightarrow{PR} and \overrightarrow{SQ} are perpendicular.
difference of 36°, what is each measurement?	► P
	$(4y-2)^{\circ}$ Q
	T
	2x°
	(5x+6)
	R

<u>1.6 – Two-Dimensional Shapes</u>

Polygon: a closed figure formed by a finite number of coplanar (on the same plane) segments called sides, where

-the sides that have common endpoint are noncollinear

-each side intersects exactly two other sides, but only at their endpoints

Polygons	Not Polygons

Concave Polygon:

Convex Polygon:

Regular Polygon:

<u>Ex</u>: Name each polygon by its number of sides. Then classify it as convex/concave and regular/irregular.

Perimeter:

Circumference:

<u>Area</u>:

What is the area of the red (shaded) if the circle has radius 13?

A gardener is looking to fence in an area of 36 sq feet. Would it be cheaper to use a circular or square shape?

Find the perimeter of the triangle shown below.

Method 1 for PQ

Method 2 for PR

24

10

<u>1.7 – Three-Dimensional Shapes</u>

Polyhedron:

Prism:

Pyramid:

<u>Ex</u>: State whether each is a polyhedron. If so, identify it, name the bases, faces, edges and vertices.

Х	D	Base:
		Faces:
	АВ	Edges:
Ŷ	c	Vertices:

Regular Polyhedron:

Surface Area:

Volume:

<u>Ex</u>: Find the volume and surface area of the Great Pyramid.

