\qquad

1.1/1.3 - Geometry Definitions and Distance \& Midpoint Formulas

Point: a location that has no ___ or _____	Example Name:	${ }^{A} \quad 0-D$
Line: a straight one-dimensional figure having no thickness and extending infinitely in both directions. Between any two points there is exactly \qquad line.	Example: Name:	$\stackrel{p}{\stackrel{0}{*}} \stackrel{0}{*}^{\text {1-D }}$
Plane: flat surface made up of at least \qquad points (not on the same line) that extends infinitely in all directions.	Example Name:	2-D
Collinear:	Coplanar:	

Example

a) Give two different names for a line containing point Z.
b) Give two different names for the plane.
c) Are W and Y collinear?
d) Are W and R collinear?
e) Are W and R coplanar? Are W and Z coplanar?

Intersection: the set of all points two or more figures have \qquad .

Two lines intersect at a \qquad -

Two planes intersect at a \qquad

Two shapes intersect at a \qquad

Example

a) How many planes are in the picture?
b) Where does plane GDF intersect plane X ?
c) Where does line $\overleftrightarrow{L M}$ intersect plane X ?
d) Where does line $\overleftrightarrow{L M}$ intersect line $\overleftrightarrow{J H}$?

\qquad of the straight-line segment connecting \qquad points.

Midpoint Formula in One-Dimension

Example

a) Find the length of line segment $\overline{A B}$.
b) Find the midpoint of line segment $\overline{A B}$.

Ray:
Angle:

There are 3 ways to name an angle: 1)
Example: Name all the angles for the red angle shown.

2)

What if it looked like this? Which name would no longer work?

Degree: measurement for an angle. 1° is \qquad the way around a circle.

Classifying an Angle: Angles are classified based on how

 many degrees (relative to 90°)

Angle Bisector:

Ex: $\overrightarrow{K N}$ bisects $\angle J K L$. If $m \angle J K N=8 x-13$ and $m \angle N K L=6 x+11$, find $m \angle J K N$.

Angle Pairs

Adjacent Angles:	Linear Pair:	Vertical Angles:

Complementary Angles:

Supplementary Angles:

Ex: Two supplementary angles have a difference of 36°, what is each measurement?

Ex: Find x so that $\overleftrightarrow{P R}$ and $\overleftrightarrow{S Q}$ are perpendicular.

1.6 - Two-Dimensional Shapes

Polygon: a closed figure formed by a finite number of coplanar (on the same plane) segments called sides, where -the sides that have common endpoint are noncollinear
-each side intersects exactly two other sides, but only at their endpoints

Polygons	Not Polygons

Concave Polygon:

Convex Polygon:

Regular Polygon:

Ex: Name each polygon by its number of sides. Then classify it as convex/concave and regular/irregular.

Perimeter:

Circumference:

Area:
What is the area of the red (shaded) if the circle has radius 13 ?

A gardener is looking to fence in an area of 36 sq feet. Would it be cheaper to use a circular or square shape?

Find the perimeter of the triangle shown below.
Method 1 for PQ
Method 2 for PR

1.7 - Three-Dimensional Shapes

Polyhedron:
Prism:
Pyramid:
NOT POLYHEDRONS: \qquad
\qquad , \qquad)

A cylinder is a solid with congruent parallel circular bases connected by a curved surface.

A cone is a solid with a circular base connected by a curved surface to a single vertex.

A sphere is a set of points in space that are the same distance from a given point. A sphere has no faces, edges,

or vertices.

In naming a polyhedron, you name it by its \qquad and the type of polyhedron (prism or pyramid).

Ex: State whether each is a polyhedron. If so, identify it, name the bases, faces, edges and vertices.

Regular Polyhedron:

Surface Area:

Volume:
Ex: Find the volume and surface area of the Great Pyramid.

