Honors 1

Name: \qquad

12.1 - Samples and Studies

Statistics:

Population:

Sample:

Examples: In the following studies, state the population and the sample.

A researcher was interested in the effectiveness of a program in preparing high school juniors nationwide for the ACT so one school in each state was selected to participate in a test study.	A researcher is interested in the average number of hours of TV watched per week by children under the age of 5, so a sample of 100 MT children under the age of 5 is conducted using hospital birth records.	A high school principal is deciding whether the school should change its mascot so she decides to survey some of the students.

Bias:

Five Types of Samples

Simple Random Sample: each member of a population has an equal chance of being selected. Ex:	Systematic Sample: members are selected according to a specified interval from a random starting point. Ex:	Self-Selected Sample: members volunteer to be included in the sample. Ex:
Convenience Sample: members who are readily available or easy to reach are selected. Ex:	Stratified Sample: the population is first divided into similar, nonoverlapping groups, and then members are randomly selected within the groups. Ex:	

Three Types of Studies

Determine the Type of Study

1) A company shows 5 different commercials to a group of students and records their reactions.
2) Scientists study the behavior of two groups of rats (sugar and no sugar) to determine sugar's effect on their ability to complete a maze.
3) The school board is interested in parents' thoughts on building new schools in the district so a questionnaire is sent home in the newsletter.

Type	Definition
survey	Data are collected from responses given by a sample regarding their characteristics, behaviors, or opinions.
observational study	Members of a sample are measured or observed without being affected by the study.
experiment	The sample is divided into two groups: - an experimental group that undergoes a change, and - a control group that does not undergo the change.
The effect on the experimental group is	
then compared to the control group.	

Determine whether the following are biased or unbiased:

1) Do you like animals, and would you ever consider having a dog or cat as a pet?
2) What type of music do you listen to?
3) To study the effects of a new training method a dog trainer tries the old method on a control group of terriers and the new method on an experimental group of retrievers.

12.2 - Statistics and Parameters

Parameter: measure that describes a characteristic of a population. This is the value we want to know but usually the population is so large we can't calculate it.

Statistic: measure that describes a characteristic of a sample, which is being used to estimate the parameter.

Example: At a local university, a random sample of 40 scholarship applications is selected. The mean GPA of the 40 applicants is calculated.
Sample: Population:

Sample Statistic:
Population Parameter:

Example: An NFL team is debating between two running backs to draft for their team. The number of rushing yards from the past 5 games is shown below. Which one should they pick? What should be calculate to decide?

Option A: 75, 80, 85, 90, 85
Option B: 40, 120, 40, 60, 160

Standard Deviation:

KeyConcept Standard Deviation
Step1 Find the mean, \bar{x}.
Step2 Find the square of the difference between each data value x_{n} and the mean, $\left(\bar{x}-x_{n}\right)^{2}$.
Step3 Find the sum of all of the values in Step 2.
Step4 Divide the sum by the number of values in the set of data n. This value is the variance.
Step 5 Take the square root of the variance.
Formula $\sigma=\sqrt{\frac{\left(\bar{x}-x_{1}\right)^{2}+\left(\bar{x}-x_{2}\right)^{2}+\ldots+\left(\bar{x}-x_{n}\right)^{2}}{n}}$

St. Dev A =

St. Dev B =

Conclusion:

Use a graphing calculator to find the mean and standard deviation. Clear all lists.
Then press STAT ENTER, and enter each data value into L1. To view the statistics, press STAT $\square 1$ ENTER.

Example: A soda company is choosing between two machines that will fill up their cans. They take a sample of 5 cans filled up by both machines. Each machine is attempting to fill up the cans to 12 oz . Which should they choose?

Machine 1: 12.1, 11.8, 11.9, 12, 12.1
Mean $=\quad$ Mean $=$
St. Dev =

Machine 2: 12.2, 12.3, 12.3, 12.3, 12.2

St. Dev =

12.3/12.4 - Box Plots and Histograms

Example: The prices of 11 houses in the Helena area (in thousands) is shown: 135, 150, 180, 200, 225, 230, 250, $270,300,350,500$. The five-number summary are the following five values of a data set:

Minimum: Smallest value $=$
Lower Quartile (Q1): middle number between minimum and median =
Median: Middle value in data set =
Upper Quartile (Q3): middle number between median and maximum =
Maximum: Largest value $=$
*Note: You can have a calculator provide these if you follow the same steps as outlined in 12.2 and scroll down.
Example: Have a calculator compute the mean and median if we add one more house: 1500 (1.5 million).

Before	After

Boxplot:

Enter the data as L1. Press 2nd [STAT PLOT] ENTER ENTER and choose 마… Next, press 200m and choose option 9: 9لZoomStat

Example: Construct a box plot for the house data (without the $\$ 1.5$ million house).

Histogram:

Example: Construct a histogram for a study of 17 students who got the following \# of hours of sleep:

$$
4,6,6,6,6,6,7,7,7,7,7.5,7.5,8,8,9,10,12
$$

hours	frequency
$4-4.9$	
$6-6.9$	
$7-7.9$	
$8-8.9$	
$9-9.9$	
$10-10.9$	
$12-12.9$	

Hours of Sleep Each Night

Enter the data as L1. Press 2nd [STAT PLOT] ENTER ENTER and choose $\int_{\text {Thro. Next, press } 200 \mathrm{~m} \text { and choose option 9: }}^{\text {9 }}$ 9لZoomStat

12.6 Day 1 - Factorials and Permutations

Permutation:

Example: How many different ways can a red, blue and green book be arranged on a shelf?

Option 1: Make the sample space (list all possibilities)	Option 2:

Factorial (\# of ways to rearrange \boldsymbol{n} items):

$1!=\quad 7!=$
$0!$

$$
\frac{6!}{4!}=
$$

Examples

1) A student tells his friend the password for his phone uses the numbers $5,3,2,1$. How many combinations are possible?
2) A travel agency offers an Italian package for visits to 5 cities. The customer can pick the order of the cities. How many different packages are possible?

Example: What if in the Italian vacation package they offered 5 cities and you could only visit 3 of them, but you still pick the order? How many different packages would be available now?

Permutation: a specific arrangement of r items from a set of n objects

$$
\begin{aligned}
& \text { Co KeyConcept Permutation Formula } \\
& \text { Words } \begin{array}{l}
\text { The number of permutations of } n \text { objects taken } r \text { at a time is the quotient } \\
\text { of } n!\text { and }(n-r)!
\end{array} \\
& \text { Symbols } \\
& P(n, r)=\frac{n!}{(n-r)!}
\end{aligned}
$$

Example: Use the equation to calculate $\mathrm{P}(6,3)$ and $\mathrm{P}(4,1)$.

Examples

1) A soccer team has 11 players. How many ways can a coach select the order of 5 players to take penalty kicks for a tied game?
2) A computer program asks you to make a 7 character-long password using numbers and letters, but no character can repeat. How many different combinations are possible?

12.6 Day 2 - Combinations and Deciding How to Count

Lead-In: A baseball coach is deciding between 5 players for his top 3 spots in the batting order. How many different orders are there?

However, what if he doesn't care what order they are in, rather he just cares that a certain 3 were selected? So, how many different ways could each selection of 3 players have been chosen?

Each combination of 3 players could be arranged in $3!=6$ different ways. Therefore, out of the 60 possible lineups, there are \qquad $=$ \qquad different combinations.

Combination: any arrangement of r items from a group of n objects
*Note: Why is $C(n, r) \leq P(n, r)$?

SeyConcept Combination Formula	
Words	The number of combinations of n objects taken r at a time is the quotient of $n!$ and $(n-r)!!!$
Symbols	$C(n, r)=\frac{n!}{(n-r)!r!} \quad$ Note: $C(n, r)=\frac{P(n, r)}{r!}$

Examples

15 companies have applied for commercial time slots during the Super Bowl. How many different sets of companies can be selected if only 10 slots are available?

For a court case there are 30 prospective jurors. How many different ways can a panel of 12 jurors be selected?

When to Use Permutation? When to Use Combination?

-We use combinations when the order of the selection does not matter.
-We use permutations when the order does matter.
Examples: Identify whether this is a combination or permutation and then state number of possibilities.

1) selecting 3 songs from your 13 song playlist	2) selecting 4 side menu options from 6 total	3) selecting a CEO and vice-CEO from 18 applicants

Recall: We agreed the number of combinations will never be greater than the number of permutations. But when are they equal?

12.7 - Probability of Compound Events

Lead-In: Mr. and Mrs. Smith have two children. What is the probability they had a boy and then had a girl?

Option 1) List all possibilities for 2-child families.	Option 2) Calculate it.

Compound Event:

Joint Probability:

Independent Events:

Dependent Events:

KeyConcept Probability of Independent Events

WordsIf two events, A and B, are independent, then the probability of both events occurring is the product of the probability of A and the probability of B.
Symbols $\quad P(A$ and $B)=P(A) \cdot P(B)$

KeyConcept Probability of Dependent Events

Words	$\begin{array}{l}\text { If two events, } A \text { and } B \text {, are dependent, then the probability of both events occurring } \\ \text { is the product of the probability of } A \text { and the probability of } B \text { after } A \text { occurs. }\end{array}$
Symbols	$P(A$ and $B)=P(A) \cdot P(B$ following $A)$

Examples: State whether each is independent or dependent, then calculate the probability.

1) You roll two dice. Find the probability you roll a 6 and an odd number.
2) You draw 3 cards from a deck (without replacing). Find the probability of getting the 3 cards in this order. P (diamond, club, not a club)

Mutually Exclusive:

Examples: Monopoly/rolling dice questions

1) What is the probability you roll a 3 or more?
2) What is the probability you roll a 3 or a 5 ?

KeyConcept Probability of Events that are Not Mutually Exclusive

Words	If two events, A and B, are not mutually
exclusive, then the probability that	
either A or B occurs is the sum of	
their probabilities decreased by the	
probability of both occurring.	
Symbols	$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Examples: You draw a card from a deck. State whether each is mutually exclusive or not and then calculate.
P (7 or a jack) $\quad P$ (spade or a nine)

12.8 - Probability Distributions

A gaming software company with 5 online games on the market is interested in how many games each of their customers play so they surveyed 800 randomly chosen customers.

1) Find the probability that a randomly chosen customer plays 3 games.
2) Find the probability that a randomly chosen customer plays at least 4 games.

Number of Computer Games	Number of Gustomers
1	130
2	110
3	150
4	300
5	110

Probability Distribution:

Probability Graph:

*Requirements for a probability distribution: 1)
2)

Example: The probability distribution for the blood types of the general population is shown.

1) Show the distribution is valid.

Blood Type	A	B	AB	O
Percentage	0.41	0.12	0.03	0.44

2) What is the probability of the following?
$P(A$ or $B)=$
$P($ not 0$)=$
3) Make a probability graph.

Finding the Expected Value (Mean or Average)

Let's return to the first example of the video game company and calculate the average number of games played by a customer.

Method 1 (long way)
first make a probability distribution

Number of Computer Games	Probability
1	
2	
3	
4	
5	

KeyConcept Expected Value of a Discrete Random Variable

Words
The expected value of a discrete random variable is the weighted average of the values of the variable. It is calculated by finding the sum of the products of every possible value of X and its associated probability $P(X)$.

Symbols $E(X)=\left[X_{1} \cdot P\left(X_{1}\right)\right]+\left[X_{2} \cdot P\left(X_{2}\right)\right]+\ldots+\left[X_{n} \cdot P\left(X_{n}\right)\right]$, where n is the total number of values of X

Expected Value with "1 in" Probabilities

An insurance company has collected the following data on the probability of an accident costing a certain amount and is wondering what to charge for their six month-policy.

Cost	Probability
$\$ 1000$	1 in 15
$\$ 5000$	1 in 50
$\$ 10,000$	1 in 150
$\$ 20,000$	1 in 400

