11.1 – Inverse Variation

Direct Variation:	Inverse Variation:
Ex:	Ex:
Equation:	Equation:

Example: State whether each is a direct or inverse variation.

1) Hours worked and earnings	2) Speed of a car and time to complete a journey.	3) Distance from Sun and gravitational strength.

Example: State whether each is a direct or inverse relationship and write the equation.

x	у
1	16
2	8
4	4
xy =	: 5

Example: Write and solve a direct or inverse equation.

- 1) If it takes 7 machines 3 hours to manufacture a set number of pieces, how long will it take 10 machines operating at the same pace?
- 2) Nicole earns \$25.50 babysitting for 3 hours. How much will she earn for 7 hours?

You can also solve these by setting up proportions.

1)

2)

11.2 - Rational Functions

KeyConcept Rational Functions

Words

A rational function can be described by an equation of the form $y = \frac{p}{q}$, where p and q are polynomials and $q \neq 0$.

Parent function:

 $f(x) = \frac{1}{x}$

Type of graph:

hyperbola $\{x \mid x \neq 0\}$

Domain: Range:

 $\{y \mid y \neq 0\}$

х	у
-2	
-1	
-1/2	
-1/4	
0	
1/4	

1/2

<u>Lead-In</u>: Graph the parent function $y = \frac{1}{x}$

Excluded Values:

Example: State the excluded values.

$$y = \frac{5}{3x - 18}$$

$$y = \frac{2}{x^2 - 2x - 8}$$

General Form of a Rational Function

$$y = \frac{a}{x-b} + c$$

 $y = \frac{a}{x-b} + c$ State the effect of each:

b:

c:

Asymptote:

Horizontal Asymptote:

Vertical Asymptote:

A rational function in the form $y = \frac{a}{x-b} + c$, $a \ne 0$, has a vertical asymptote at the x-value that makes the denominator equal zero, x = b. It has a horizontal asymptote at y = c.

Model

State the horizontal and vertical asymptote of the function graphed below.

State the asymptotes, graph the function and state the

domain and range.
$$y = \frac{1}{x+2} - 1$$

1) Sketch V.A. and H.A.

2) Use calculator to sketch the graph.

Domain:

Range:

11.3 – Simplify Rational Expressions

Rational Expression:

Example: Simplify and state excluded values.

$\frac{(-3x^2)(5x^7)}{9x^3}$	$\frac{2x^2-12x}{x-6}$	
20110		
$\frac{2x+18}{x^2+8x-9}$		

$\frac{36-x^2}{5x-30}$			
5x - 30			

Zeros:

Example: Find the zeros of each (note: first simplify).

$x^2 + 2x - 15$	$x^2 + 3x - 18$
x+1	<i>x</i> -3

11.4 and 11.7 – Multiply and Divide Rational Expressions and Complex Fractions

$\frac{r^2x}{9t^3} \cdot \frac{3t^4}{rx}$	$\frac{4}{15n^3} \div \frac{12}{25n}$
$\frac{8t^2}{\frac{x}{x}}$ $\frac{4t}{x^3}$	A scarf bought in Italy cost 18 Euros. The exchange rate at the time was \$1 = 0.73 E. a) How much did the scarf cost in US dollars?
	b) If at the same time, 1 Canadian dollar = \$0.95 US, how much did the scarf cost in Canadian dollars?

Before simplifying rational expressions with polynomials, you should ______ first.

$$\frac{2x+6}{x^2} \div (x+3)$$

$$\frac{n^2 + 7n - 18}{n^2 - 2n + 1}$$

$$\frac{n^2 - 81}{n - 1}$$

11.5 - Dividing Polynomials

Example: Polynomial divided by a monomial

$(2x^2 + 16x) \div 2x$	$9x^5 - 5x^2 - 12) \div 3x$	

Example: Polynomial divided by a binomial

$$(x^2 - 2x - 15) \div (x + 3)$$

What if we try to factor the following expression shown below? What else can we do?

orrect:

Example: Long Division with Missing Terms

$$(2x^3 + 2x^2 - 4) \div (x - 1)$$

11.6/11.7 – Add/Subtract Rational and Mixed Expressions

Example: Add or subtract expressions with a common denominator

$\frac{3y}{3+y} + \frac{y^2}{3+y}$	$\frac{2h+4}{h+1} - \frac{5+h}{h+1}$	$\frac{3p}{p-4} + \frac{2p-5}{4-p}$

Example: Add or subtract expressions with an uncommon denominator

$\frac{3x+2}{x^2-2x-3} + \frac{x+1}{x-3}$	$\frac{6x}{4x+8} + 5x$

