\qquad Per: \qquad

Addressing Misconceptions in Simplifying Rational Expressions

Part 1: For each scenario below, state whether you can or can not simplify as shown. Provide an example with numbers (don't choose 0 or ± 1 for your variables) to prove your point and then explain your choice in your own words.

Scenario (circle yes or no)	Example with Numbers for Support	Explanation
$\frac{x}{\not x+1}=\frac{1}{1+1}$ YES or NO	$\frac{5}{5+1} \stackrel{?}{=} \frac{1}{1+1}$	
$\begin{gathered} \frac{\chi+1}{\not x}=\frac{1+1}{1} \\ \underline{\text { YES or NO }} \underline{1} \end{gathered}$		
$\frac{\left(x^{2}+2 x+1\right)}{\left(x^{2}+4 x-8\right)}=\frac{2 x+1}{4 x-8}$ YES or NO		
$\begin{aligned} & \frac{(x+1)}{(x+1) x}=\frac{1}{x} \\ & \underline{\text { YES or NO }} \end{aligned}$		
$\frac{x}{(x+1)}+\frac{(x+1)}{(x+2)}=\frac{x}{1}+\frac{1}{x+2}$ YES or NO		
$\frac{x}{(x+1)} \cdot \frac{(x+1)}{(x+2)}=\frac{x}{1} \cdot \frac{1}{x+2}$ YES or NO		

Part 2: Now, come up with two examples of your own (they can both work, both fail, or one of each). Then explain why they fail or work.

Scenario (circle yes or no)	Example with Numbers for Support	Explanation
YES or NO		
YES or NO		

Part 3: Finally, come up with a general rule/description for when you can simplify rational expressions. Write your rule/description below.

Now, go through the six scenarios on the front page and verify that if someone followed your rule, they would correctly simplify each rational expression.

Scenario	Why Your Rule Works for This Scenario
1	
2	
3	
4	
6	

