9-1 Practice Graphing Quadratic Functions

Graph each by using -b/2a to find the x-coordinate of the vertex.

Find the vertex, the equation of the axis of symmetry, and the *y*-intercept of the graph of each function.

4.
$$y = x^2 - 9$$
 6. $y = 4x^2 - 4x + 1$

Consider each equation. Determine whether the function has a *maximum* or a *minimum* value. State the maximum or minimum value.

7.
$$y = 5x^2 - 2x + 2$$

9. $y = \frac{3}{2}x^2 + 4x - 9$

Graph each function by using -b/2a to find the x-coordinate of the vertex as the first step.

♦ f(x)	
0	x

	f(x)	
 _		
		_
 0		-
0		X
		-

12. $f(x) = -2x^2 + 8x - 3$

- 13. BASEBALL The equation $h = -0.005x^2 + x + 3$ describes the path of a baseball hit into the outfield, where h is the height and x is the horizontal distance the ball travels.
 - **a.** What is the equation of the axis of symmetry?
 - **b.** What is the maximum height reached by the baseball?
 - c. An outfielder catches the ball three feet above the ground. How far has the ball traveled horizontally when the outfielder catches it? (Hint: How far has it traveled when it is halfway to the outfielder? Draw a picture if necessary)

8