\qquad
\qquad
1.5 -Combinations and Composition of Functions Investigation

1.	$h(x)=(f+g)(x)$ and $h(x)$ is graphed
below. Come up with equations for	
$f(x)$ and $g(x)$ that would produce $h(x)$,	
then sketch, and label, the graphs in. Note,	
neither can be equations with a slope of 0.	
$f(x)=$	$2 x+3$

3. Verify your work to problem 1 above by filling in the tables below.

x	-2	-1	0	1	2
$f(x)$	-1	1	3	5	7

x	-2	-1	0	1	2
$g(x)$	4	2	0	-2	-4

x	-2	-1	0	1	2
$h(x)$	3	3	3	3	3

$h(x)=3$	
5.	$h(x)=(f g)(x)$ and $h(x)=x^{2}+4 x$
	Come up with equations for $f(x)$ and
	that would produce $h(x)$. Note, each
	equation must contain a variable.
$f(x)=$	$\frac{(x+6)}{(x-2)}$
$g(x)=$	(x)

7. $h(x)=(f-g)(x)$ and $h(2)=20$. Come up with equations for $f(x)$ and $g(x)$ that would produce $h(x)$. Note, one equation must be of degree 3 and the other degree 2 .

$$
\begin{aligned}
& f(x)=\frac{4 x^{3}+x^{2} \quad f(2)=36}{} \quad g(2)=16 \\
& g(x)=\frac{4 x^{2}}{h(2)=f(2)-g(2)=20}
\end{aligned}
$$

2. $h(x)=(f+g)(x)$ and $h(x)$ is graphed below. Come up with equations for $f(x)$ and $g(x)$ that would produce $h(x)$, then sketch, and label, the graphs in. Note, neither can be equations with a slope of 0 .

\qquad

$$
g(x)=\frac{x+2}{+5}
$$

4. Verify your work to problem 2 above by filling in the tables below.

x	-2	-1	0	1	2
$f(x)$	-1	0	1	2	3

x	-2	-1	0	1	2
$g(x)$	0	1	2	3	4

x	-2	-1	0	1	2
$h(x)$	-1	1	3	5	7

This is the table for $2 x+3$
6. $h(x)=(f / g)(x)$ and $h(x)=\frac{1}{x-7}$. Come up with equations for $f(x)$ and $g(x)$ that would produce $h(x)$. Note, each equation must contain a variable.

$$
\begin{aligned}
& f(x)=x+3 \\
& g(x)=x^{2}-4 x-21=(x+3)(x-7)
\end{aligned}
$$

8. $h(x)=(f g)(x)$ and $h(4)=100$. Come up with equations for $f(x)$ and $g(x)$ that would produce $h(x)$. Note, one equation must be of degree 2 and the other degree 1.

$$
\begin{aligned}
& f(x)=\frac{x^{2}+x}{} \quad f(4)=20 \\
& g(x)=\frac{x+1}{h(4)}=f(4) g(4)=5
\end{aligned}
$$

9. $k(x)=f(g(x))$ and $k(x)=(x-3)^{2}$. Come up with equations for $f(x)$ and $g(x)$ that would produce $k(x)$. $f(x)=$ X^{2} produce $k(x)$.	10. $k(x)=f(g(x))$ and $k(x)=\sqrt{x+4}+5$. Come up with equations for $f(x)$ and $g(x)$ that would produce $k(x)$. $f(x)=\sqrt{x}+5$
$\begin{aligned} & g(x)=x-3 \\ & f(g(x))=f(x-3)=(x-3)^{2} \end{aligned}$	$\begin{aligned} & g(x)=x+4 \\ & f(g(x))=f(x+4)=\sqrt{x+4}+5 \end{aligned}$
11. $k(x)=f(g(x))$ and $k(6)=10$. Come up with equations for $f(x)$ and $g(x)$ that would produce $k(x)$. Note, one of the equations must have degree 2 . $f(x)=$ \qquad $x+7$	12. $k(x)=f(g(x))$ and $k(-4)=10$. Come up with equations for $f(x)$ and $g(x)$ that would produce $k(x)$. Note, one of the equations $f(x)=x^{2}+1$ must have degree 2.
$g(x)=x^{2}-33$	$g(x)=X+7$
$K(6)=f(g(6))=f(3)=10$	$K(-4)=f(g(-4))=f(3)=10$

13. In chemistry, one regular conducts mole conversions to convert grams of a substance to number of atoms. It turns out this process is just a composition of functions.
For chlorine, to convert from moles to atoms, you use the following function: $a(m)=m\left(6.02 \cdot 10^{23}\right)$
For chlorine, to convert from grams to moles, you use the following function: $m(g)=\frac{g}{35.5}$
i) Simplify the following to get a function that takes you directly from grams to atoms:
$a(m(g))=a\left(\frac{9}{35.5}\right)=\frac{9\left(6.02 \cdot 10^{23}\right)}{35.5}$
ii) Use your finding from part (i) to determine how many atoms are in 83 grams of chlorine
14. Find equations for $f(x)$ and $g(x)$ that satisfy the following conditions. Then record and graph them.

- $f(g(x))=x$
- $g(f(x))=x$
- Both equations are linear
- $f(x)$ has a negative slope
- $g(x)$ has a negative y-intercept
$f(x)=\frac{-1 / 2 x-2}{-2 x-4}$
$g(x)=$

15. Fill in a table of points for each function and record what you notice.

x	-4	-2	0	2	4
$f(x)$	0	-1	-2	-3	-4

x	0	-1	-2	-3	-4
$g(x)$	-4	-2	0	2	4

Noticing: The inputs and outputs (x and y-coordinates) for the functions are flipped.

