

9.
$$k(x) = f(g(x))$$
 and $k(x) = (x-3)^2$. Come
up with equations for $f(x)$ and $g(x)$ that
would produce $k(x)$.
 $f(x) = \underbrace{X-3}$
 $f(g(x)) = f(x-3) = (x-3)^2$.
 $g(x) = \underbrace{X-3}$
 $f(g(x)) = f(x-3) = (x-3)^2$.
 $f(g(x)) = f(g(x))$ and $k(6) = 10$. Come up
with equations for $f(x)$ and $g(x)$ that would
produce $k(x)$. Note, one of the equations
for $f(x)$ and $g(x)$ that would
produce $k(x)$. Note, one of the equations
f(x) = \underbrace{X+4}_{-}
 $g(x) = \underbrace{X^2-33}_{-}$
 $K(G) = f(g(G)) = f(3) = |0$
13. In chemistry, one regular conducts mole conversions to convert grams of a substance to number of
atoms. It turns out this process is just a composition of functions.
For chlorine, to convert from moles to atoms, you use the following function: $a(m) = m(6.02 \cdot 10^{23})$
For chlorine, to convert from grams to moles, you use the following function: $a(m) = m(6.02 \cdot 10^{23})$
For chlorine, to convert from grams to moles, you use the following function: $m(g) = \frac{g}{35.5}$
i) Simplify the following to get a function that takes you directly from grams to atoms:
 $a(m(g)) = G(\frac{9}{3.5.5} = \frac{9(.6.02 \cdot 10^{24})}{3.5.5}$
ii) Use your finding from part (i) to determine how many atoms are in 83 grams of chlorine
 $f(x) = x + \frac{1}{2}$
 $g(x) = \frac{-1/2 \times -2}{g(x)}$
14. Find equations for $f(x)$ and $g(x)$ that satisfy the following conditions. Then record and graph them.
 $f(g(x)) = x$
 $g(f(x)) = x$
 $g(f(x)) = x$
 $g(x)$ has a negative slope
 $f(x) = \frac{-1}{2} - \frac{2}{3} - \frac{4}{7}$
 $f(x) = 0 - 1 - 2 - \frac{3}{2} - \frac{4}{7}$

	X	0	- 1	-2	-)	-4	
	q(x)	-4	-2	0	2	4	
Noticing: The inputs and outputs (x and y-coordinates) for the functions are flipped.							